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Melanoma is one of the fastest growing cancers in the world, and can affect

patients earlier in life than most other cancers. Therefore, it is imperative to be able

to identify patients at high risk for melanoma and enroll them in screening programs

to detect the cancer early. Electronic health records collect an enormous amount of

data about real-world patient encounters, treatments, and outcomes. This data can

be mined to increase our understanding of melanoma as well as build personalized

models to predict risk of developing the cancer. Cancer risk models built from struc-

tured clinical data are limited in current research, with most studies involving just

a few variables from institutional databases or registries. This dissertation presents

data processing and machine learning approaches to build melanoma risk models

from a large database of de-identified electronic health records. The database con-

tains consistently captured structured data, enabling the extraction of hundreds of

thousands of data points each from millions of patient records. Several experiments

are performed to build effective models, particularly to predict sentinel lymph node

metastasis in known melanoma patients and to predict individual risk of developing

melanoma. Data for these models suffer from high dimensionality and class imbalance.

v



Thus, classifiers such as logistic regression, support vector machines, random forest,

and XGBoost are combined with advanced modeling techniques such as feature se-

lection and data sampling. Risk factors are evaluated using regression model weights

and decision trees, while personalized predictions are provided through random for-

est decomposition and Shapley additive explanations. Random undersampling on

the melanoma risk dataset shows that many majority samples can be removed with-

out a decrease in model performance. To determine how much data is truly needed,

we explore learning curve approximation methods on the melanoma data and three

publicly-available large-scale biomedical datasets. We apply an inverse power law

model as well as introduce a novel semi-supervised curve creation method that uti-

lizes a small amount of labeled data.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

1.1.1 Melanoma

Melanoma is the most dangerous form of skin cancer: on average, one person in the

U.S. dies every hour from this disease [51]. The rates of incidence are rising, with

over 90,000 new cases of melanoma expected in 2019 [4, 13]. Early detection of the

cancer is key, as the 5-year survival rate is less than 20% for patients with distant

metastases [66]. A key component of early detection is routine screening for the

disease by both the patient and dermatologist. Screening guidelines, however, vary

across different countries [168]. Melanoma is also one of the most common cancers

for young adults [1], people who may not be concerned or motivated enough to enroll

in screening programs. While thousands of new cases are expected every year, the

number of new melanoma patients is significantly smaller than the full population

of the U.S., which would make mass screening too costly [156]. Therefore, we need

predictive models that can target high-risk patients for regular screening.

Ultraviolet (UV) light exposure is known to be a risk factor for the cancer, and

geographic location and lifestyle habits can affect the amount of exposure a patient

has over his or her lifetime [69]. Family history of melanoma and personal history

of dysplastic or benign moles are also present in patients that develop the disease.

Similar to screening guidelines, different countries have different categorizations of

various risk factors for melanoma [168]. While a few known risk factors exist, modern

technologies and data collection enable us to uncover many risk factors that have

1



been previously unknown.

Beyond physicians, there is a need to educate patients about their risk for the

disease. Studies have found that some patients with a previous diagnosis of melanoma

actually increase their time under the sun [104]. Additionally, a large proportion of

patients report never applying sunscreen or seeking shade when outside on a sunny

day, and some still utilize tanning beds. While physicians instruct melanoma patients

to limit UV exposure, many do not change their behavior. This shows that some

patients value physical appearance or lifestyle choices over melanoma prevention. A

predictive model is able to show, using the patient’s own data, why he or she is at

high risk for the disease, and may be able to influence behavior more than a physician

alone. For more information about the epidemiology, risk factors, and treatment of

melanoma, please refer to [51].

1.1.2 Electronic Health Records

Electronic Health Record (EHR) systems capture large databases of clinical patient

data relating to office and hospital visits, medical history, lab and pathology results,

prescriptions, and social and demographic information. The biggest promise of EHR

systems is being able to quickly collect structured data from medical providers, im-

prove the efficiency and accuracy of care. This also results in consistent and clinically

relevant medical datasets that can be utilized for research purposes. Due to elec-

tronic record-keeping requirements such as the Health Information Technology for

Economic and Clinical Health (HITECH) Act [11], the last few years have seen an

immense increase in the use of EHR systems [15]. The 21st Century Cures Act,

passed in 2016, provided $1.8 billion to support cancer research through the Cancer

Moonshot [6]. This funding will go to advancing precision medicine initiatives by

increasing operability between EHR systems.

Holistic data about a patient is advantageous for modeling and treatment of
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melanoma, as early detection is key to effective treatment. EHR data more desir-

able for personalized medicine applications, because EHRs collect real-world data as

opposed to highly curated data from clinical trials and prospective studies. While

many retrospective and observational studies are performed at research institutions,

the patients in those datasets often do not reflect the diverse population across the

country.

There are barriers, however, to fully unlocking the potential of this data. EHR sys-

tems are developed independently and often maintain proprietary standards for data

collection and storage, and database schemas can be different across hospitals and

physician practices. As data is collected from real-world environments, data elements

that are important for research may not be collected due to time constraints. There

can also be inconsistencies between how different physicians and facilities record the

same types of information. Furthermore, many EHRs capture clinical information via

free-text notes, making it difficult to extract structured information for use in auto-

mated decision support algorithms. While there is a great deal of research involving

natural language processing techniques to extract structured elements from free-text

data [46], the complexity of clinical information prevents data from multiple systems

or doctor’s offices to be used together.

1.1.3 Machine Learning and Big Data

Machine learning (ML) is the process of feeding data into an algorithm that can

analyze patterns to make predictions for new data. Datasets for machine learning

are increasing in both availability and size, especially in the healthcare space. ML

models can be extremely useful in the context of melanoma risk prediction, as they can

extract complex information from clinical records, and provide predictions for new

patients presenting for screening. In addition to accurate predictions, the models

must be interpretable, meaning the predictions can be explained to physicians and
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their patients.

If a large quantity of consistent patient data can be collected for a predictive

model, computational challenges arise when transforming the data and training a

machine learning algorithm. First, data elements must be extracted from the EHR

system and transformed into a tabular format to be passed to a machine learning

model. The size of the dataset and variety of data can cause traditional processing

and analytic tools to fail [83]. The field of big data has arisen in the last several years

to be able to extract insight and build models from vast amounts of data. While big

data has been historically defined by the 5 V’s (Volume, Velocity, Variety, Veracity,

Value), it suffices to consider a dataset to be “big data” when traditional computing

techniques and resources are unable to analyze or model the data.

Cloud computing offers access to virtually infinite computing infrastructure, al-

lowing for processing and modeling of big data. This technology can be utilized to

evaluate a wide range of algorithms to produce accurate models. When dealing with

big data and cloud computing, predictive accuracy is not the only consideration when

choosing classifiers and machine learning techniques; computational complexity and

cloud computing cost must also be factored in the selection process.

Many datasets for machine learning can suffer from class imbalance, namely, when

a particular class of interest is much less represented than other classes in a dataset

[85, 166]. A classic example is in binary classification for disease detection. The

estimated cancer incidence in the U.S. is 439.2 per 100,000 men and women [109].

Therefore, a predictive model for general cancer risk would need to detect positive

instances from a 0.44% class distribution (number of positive cases / number of total

cases). Machine learning methods such as data sampling can be used to address this

class imbalance.
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1.1.4 Limited Data and Limited Labels

The era of big data has enabled vast amounts of data to be processed and analyzed

in a cost-efficient manner on a scale like never before. Limited data, however, is still

a challenge even when dealing with big data. Just because there is a large amount

of data, it is not necessarily the right data. Supervised classification algorithms

require that the data is labeled, meaning the class membership of each instance

in the training data is known. For many applications, this requires expensive and

time-consuming human annotation. Therefore, even if there is an infinite amount of

computing power for model training, there is still a large cost that must be dedicated

to labeling [73]. The question of “How much data is needed?” has been asked many

times and explored through numerous studies, especially within the bioinformatics

and biomedical community [55, 103]. More recently, the problem of learning from

limited labels has been formulated as an active area of research [141], even spawning

a new research program funded by DARPA [3]. Generally, the problem of “limited

labels” refers to when there is a large amount of unlabeled data available, but only a

small amount of labeled data. Class imbalance is even more important when dealing

with limited labels, as a theoretical cancer detection dataset with 10,000 labeled

instances would only have 44 positive cases (according to the 0.44% class distribution

discussed above).

The opinion in the machine learning community is often that more data produces

better models, and this assumption has not been made without experimental evi-

dence [164]. With most ML problems, however, there is a point at which the law

of diminishing returns takes effect, and the achieved classification performance hits

a plateau with respect to dataset size [155]. This phenomenon can be visualized by

creating a learning curve: training models on increasing sizes of data and plotting

the data size versus classification performance on a graph. Approximating learning

curves is a useful exercise for scenarios of limited labeled data where more labels can
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be gathered at a known cost. The shape of the curve along with the labeling cost can

be used to estimate the point of diminishing returns: where it would not be worth it

to collect more labeled data.

1.2 CONTRIBUTIONS

In this work, we present the data engineering methods used to create a dataset for

melanoma risk prediction along with machine learning approaches to build risk mod-

els. The risk problems studied include sentinel lymph note metastasis and individual

risk of developing melanoma. Additionally, we explore methods to build effective

models from limited data, as well as approaches to estimate how much data is needed

for future biomedical studies. The key contributions of this dissertation are as follows:

• Present a large, unique de-identified dataset of dermatology patients for melanoma

risk research along with novel data engineering and feature processing methods.

• Review current literature for predicting cancer risk and identify shortcomings

in the research.

• Build a model to predict sentinel lymph node metastasis in melanoma from

tumor and patient encounter information.

• Build an accurate, clinically relevant, and explainable model to predict melanoma

risk from routine office visits.

• Investigate advanced machine learning methods such as data sampling, feature

selection, and model interpretation for the melanoma risk problem.

• Apply inverse power law learning curve fitting to four big biomedical datasets.

• Present a novel semi-supervised method for learning curve approximation.
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1.3 DISSERTATION STRUCTURE

The remainder of this document is organized as follows:

Chapter 2 describes machine learning algorithm theory and data engineering meth-

ods used throughout the dissertation, while Chapter 3 presents the de-identified

dataset created for the melanoma risk problems. Chapter 4 discusses an experi-

ment for detecting sentinel lymph node metastasis for patients with a diagnosis of

melanoma. Several studies are described in Chapter 5 for building melanoma risk

models and machine learning techniques to improve accuracy and interpretability

of the models. Also included is a literature review of existing studies that predict

cancer risk from clinical data (Section 5.2). Chapter 6 presents two experiments fo-

cused on learning from limited data, one for class imbalance in melanoma risk, and

one for learning curve approximation with four large biomedical datasets (of which

melanoma risk is one). Where necessary, each chapter contains additional related

works and methodology information. Finally, the conclusions and future work are

presented in Chapter 7.

7



CHAPTER 2

THEORY AND METHODOLOGY

This chapter presents the necessary theoretical background for the experiments con-

ducted in this dissertation. Sections 2.1-2.2 review machine learning algorithms,

techniques, and experimental design, while Section 2.3 presents the infrastructure

and tooling used for data engineering. The various software packages used through-

out are outlined in Section 2.4.

2.1 MACHINE LEARNING

At the highest level, ML methods can be separated into unsupervised and supervised

learning; namely, whether or not the dependent variable (i.e., class label) for a group

of data is known. The most straightforward scenario is supervised learning, where the

data has a number of independent variables (i.e., attributes or features) and the class

labels are known. An example of this is for email spam detection. Known “real” and

“spam” emails are fed into a algorithm using various attributes of the email text and

metadata. A trained model can then make future predictions for new emails which

are not yet classified into each group [40]. In unsupervised learning, the attributes

are available for a set of data but the class labels are unknown. With email data,

an unsupervised learning activity might be to divide an inbox into a group based on

related categories (e.g., financial, work, personal), when the categories are not known

up-front. Semi-supervised learning is a combination of the two methods where there

is a (typically large) set of unlabeled data and a (typically small) set of labeled data.

Semi-supervised learning is useful when assigning labels involves expensive human
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annotation. An application of semi-supervised learning for email spam would be to

use a small set of emails where the real/spam class was annotated by humans, and a

large corpus of unlabeled emails to augment the labeled data.

Within supervised, unsupervised, and semi-supervised learning, there are several

families of algorithms that can be used for different applications. Classification is a

supervised learning task that seeks to discriminate a class label from a set of inputs.

When there are exactly two different values for the class, this is known as binary

classification. Examples beyond email spam are predicting patient response to a

drug [44] and sentiment analysis of text data [118]. Regression is also a supervised

learning task that fits a model to a group of data, but has a continuous dependent

variable allowing for numeric predictions rather than a class [77]. Recommendation

engines predict meaningful relationships between entities. Recommending books,

music, movies, and other products to users based on their relationships with other

users is a prime example of these systems. Collaborative filtering methods are widely

used to create recommender systems [154]. Clustering is an unsupervised learning

task that groups elements in a population together by examining their various features

[184]. Additionally, data processing techniques outside of the learning tasks are used

to improve performance of the models. Data sampling alters the distributions of

instances in the data to allow algorithms to learn from imbalanced data. Feature

selection is a dimensionality reduction technique that selects the most informative

features for training a model. While complex algorithms can produce ideal results,

there must be consideration for interpretability of these models.

2.1.1 Algorithms

This dissertation focuses primarily on binary classification tasks to discriminate be-

tween low-risk and high-risk patients from EHR records in the context of melanoma.

Clustering is used to understand certain properties of the data, while regression is
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used for performance analysis and learning curve predictions. The remainder of this

sub-section summarizes various algorithms used in our experiments or reviewed in

related literature. Each model has some parameters (also known as hyperparame-

ters) that must be chosen before training the model; we introduce the parameters in

this section, while the methods sections in subsequent chapters describe the selection

process for each experiment.

Survival Analysis

Survival analysis involves modeling time to a specific event, such as disease devel-

opment or death. A Kaplan-Meier curve estimates the survival function of different

cohorts of patients and plots the probability of survival along a time axis. Tradi-

tionally, this allows for comparison of patient cohorts with different characteristics of

treatment regimens to determine which treatment to select for a new patient. An ex-

ample is shown in Figure 2.1, where Kim et al. use a Kaplan-Meier curve to compare

the survival rates of high-risk and low-risk patients for breast cancer [78]. Cox pro-

portional hazards [39] is the typical model of choice for survival analysis, as it allows

for time censoring and multivariate analysis. It is a regression model that creates

a function of time, from baseline covariate values, that model the probability of an

event occurring at any future time (disease development, death, etc.), according to

the following hazard function:

h(t) = h0(t)× exp (b1x1 + b2x2 + . . .+ bpxp) (2.1)

In risk prediction studies, the event is the diagnosis of cancer, and time zero is

either the enrollment in a study, or start of the observation period. A patient is

censored when follow-up is lost before the event occurs, which is typically the end of

the follow-up period, but may be other scenarios such as a patient dropping out of
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Figure 2.1: Example Kaplan-Meier curve [78]

the study or death.

Logistic regression

Logistic regression (LR) is a widely used linear model for classification. This technique

allows for multivariate analysis and modeling of a binary dependent variable [74]. In

LR, a linear model is built on the independent features, and then a logistic function

is applied to discriminate between the two classes of output [74]. The log-odds for a

particular class is:

` = logb
p

1− p
= β0 + β1x1 + β2x2 + βnxn (2.2)

Weights (β) for each feature are learned by optimizing a cost function, and these

are used to make a prediction on a new case. Linear models are improved by using

regularization in the cost function; we use L2 regularization (also known as ridge

regression) which minimizes the following cost function:

min
w,c

1

2
wTw + C

n∑
i=1

log
(
exp

(
−yi

(
XT
i w + c

))
+ 1
)

(2.3)
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We tested various values of the regularization parameter C during the hyperpa-

rameter selection process.

Decision trees

Decision trees (DT) are ML models that can be used for regression or classification.

They produce an output similar to a flow chart, allowing a path to be traversed based

on the value of the instance in question, resulting in a predicted value. The model is

trained by selecting a feature that best discriminates between the different outcomes,

splitting the tree on this feature (node), and recursively performing this split on each

new node that is generated. Splitting candidates are determined by the split that

minimizes impurity. We use Gini impurity in our experiments:

H (Xm) =
∑
k

pmk (1− pmk) (2.4)

The splitting produces a tree-like graph, and new instances can be scored by

traversing the path created based on the instance’s feature values. Various parameters

of the model will determine when this splitting stops (number of iterations, number

of nodes, etc.). Since the model is selecting features to split the tree on at each node,

there is an inherent feature reduction that occurs, resulting in the most informative

features being included in the model. Common algorithms for decision trees are

CART [27], C4.5 [119], C5.0 (an improved, commercialized version of C4.5), and

Bayesian trees [35]. An example tree is shown in Figure 2.2 [35].

Tree ensembles

An extension of the decision tree model is called random forest (RF). In a random

forest, multiple trees are built and predictions are decided by majority voting [26,75].

Bagging is used to construct the trees so that a random subset of features and a
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Figure 2.2: Example decision tree [35]

random subset of data are selected to build each tree. While building the trees, a

random subset of features are considered at each decision node. After all trees are

built, classification takes place by evaluating the instance with respect to all trees

and the decision is the one agreed upon by the majority of the trees. We evaluated

several values for the maximum depth of each tree and the total number of trees for

each forest.

Gradient boosting is a particular boosting process that uses an additive model to

select weak learners for the ensemble by optimizing a loss function. XGBoost (XGB)

is an enhanced version of a typical gradient boosted machine that uses regularization

in model building to improve performance [34]. It utilizes tree models as the weak

learners, and thus maximum depth and number of trees must be selected. In addition,

we test various values of the learning rate used in the boosting process.
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Figure 2.3: Basic framework of an SVM [78]

Support vector machine

Another widely used classification model is the support vector machine (SVM). An

SVM creates a set of hyperplanes for each feature in an infinite dimensional space, and

fits linear or nonlinear models that most effectively discriminate between the values

of a binary output variable. Kim et al. (Figure 2.3) provide a basic description of an

SVM model in their paper that discriminates between recurrence and non-recurrence

in breast cancer patients [78]. Due to the size of our data we chose a linear kernel and

tested various values of the L2 penalty parameter, C. Since SVM does not return

class membership probabilities (as opposed to the other models used in this study),

we calibrate probabilities with cross-validation using Platt’s method [116].

Näıve Bayes

Näıve Bayes (NB) is a classifier that utilizes Bayes’ theorem and independence as-

sumptions to make predictions based on the feature probabilities of each instance

[183]:

ŷ = arg max
y
P (y)

n∏
i=1

P (xi|y) (2.5)
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We used a multinomial NB model, where parameters are estimated by relative

frequency counting, and selected from various values of the smoothing parameter

α [124,125]:

θ̂yi =
Nyi + α

Ny + αn
(2.6)

Deep learning

A popular model in the machine learning community is the artificial neural network

(ANN), which can be used for classification, regression, and unsupervised learning.

Variations of ANNs have been shown to be highly effective in complex tasks such

as image recognition [96]. A neural network is roughly modeled after the way the

human brain works, by creating nodes (neurons) that give weights to certain inputs

and produce an output value. Multiple layers of nodes are tied together with an input

layer taking in the value of the independent variables, and an output layer with nodes

representing each of the possible outcome values. The weights at each layer in the

network are modified as the model learns through back-propagation. When one node

in the output layer is positive, the value at the node is taken as the prediction. When

there is a large number of intermediate layers, this is often called “deep learning”,

and has shown impressive results for very complex modeling problems [105]. Ahmad

et al. provide an illustration of a basic network in Figure 2.4 [9].

2.1.2 Dimensionality Reduction

Dimensionality reduction minimizes data size by combining, transforming, and re-

moving features. Notable algorithms for dimensionality reduction are principal com-

ponent analysis and singular value decomposition. Feature selection is a technique in

dimensionality reduction that chooses specific features based on a statistic or evalu-
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Figure 2.4: Basic framework of an ANN [9]

ation of how useful the feature is to the overall modeling task [45]. Feature rankers

order the features according to a certain statistic, leaving the practitioner to deter-

mine how many of the top features he or she wants to include in the model. Many

of these algorithms utilize univariate analysis methods, such as information gain or

mutual information. Several predictive models, such as decision trees, effectively per-

form feature selection as part of the model building process. The p-values from a

statistical model can also be used as a form of feature selection, by only selecting

those features that have significant p-values (often <0.05).

For dimensionality reduction in our experiments, we first remove all features with

zero variance (i.e. same value in all samples) and utilize the χ2 feature ranker to select

the top K features. Various values of K are tested throughout the experiments. χ2

tests the independence of two variables; in feature selection these are a particular

feature and the class:

χ2 =
n∑
i=1

(N1 − Ei)2

Ei
(2.7)

If a feature is independent of the class, then is is not informative for ML purposes

and can be discarded.

Feature selection and classification algorithms can depend on assumptions about
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distributions of independent variables and therefore, we standardize all features by

removing the mean and scaling to unit variance. In the event of sparse data we do

not remove the mean, as it would destroy the sparse properties of the data.

2.1.3 Data Sampling

Many supervised learning problems suffer from class imbalance. Specifically, this

means that certain cases of interest are less represented in a dataset than normal

cases [70, 166]. In healthcare applications, this can mean that healthy patients far

outnumber those with a disease of interest. This becomes especially challenging when

attempting to train a machine learning model, because the model will tend to focus

on the majority cases rather than those of interest (minority cases). The problem

of class imbalance can be exacerbated when dealing with big data, as there can be

millions of negative (majority) samples, but only hundreds or thousands of positive

(minority) samples.

Data sampling methods are one way to address class imbalance for model train-

ing. They involve either undersampling majority cases or oversampling minority

cases, or combination of both. Undersampling techniques are desired when dealing

with large datasets to reduce computational complexity and runtime considerations.

Random undersampling (RUS) randomly removes instances from the majority class

based on a specific target class ratio. It is not always advantageous to fully balance

the classes, especially when the classes are severely imbalanced, because it results in

throwing away a large proportion of data. Therefore, we explore various sampling

ratios throughout the experiments to see which is most effective. While not used in

this dissertation, oversampling techniques include random oversampling (ROS), which

randomly duplicates samples from the positive class, and Synthetic Minority Over-

sampling Technique (SMOTE), which selects minority samples to duplicate based on

a nearest-neighbor approach [33].
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2.1.4 Interpretability

In many contexts, it is important to not only to get accurate predictions from an

ML model, but also to understand (i.e., interpret) why the model made that pre-

diction. This is especially important for healthcare applications, as the predictions

from a model may influence patient care. In this sub-section, we explore various

interpretability considerations of the ML algorithms explored in this research.

Selecting the most important features to input to a model is important for both

performance and interpretability considerations [167]. Linear models, such as logistic

regression, are much easier to interpret when the number of features included in the

model is small. This is because each feature has a level of contribution toward the final

prediction, and it would be difficult for a person to understand contributions given

by thousands of variables. Limiting the number of features, however, may impact

performance of the model.

Models have different levels of global and local interpretation. Global interpre-

tation is when a model can describe how a prediction is made generally, across all

samples. Local interpretation is when predictions can be explained for a local region

of the data (or a single sample). Linear models and tree models allow for both global

and local interpretation, since the coefficients of a linear model and decision path of

a tree are the same for all instances that pass through the model. This is beneficial

for identifying and studying risk factors for a disease, as important factors in these

models can be generalized across large patient populations. Linear models are widely

used due to the simplicity of the fitted model. It is easy for a practitioner to see

which features contribute toward the prediction [153]. However interpretability of

both linear and tree models is limited when a large number of variables are involved,

as a person will not be able to grasp the contributions of more than ten or so features.

As ensembles such as RF or XGB contain a combination of potentially hundreds

of decision trees, it is difficult to generalize the decision path of all instances. Global
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interpretability can be assessed by calculating the average reduction of loss when

splitting on each particular feature (Gini importance [101]). This is known as feature

importance; feature importance does not describe the directional impact of each fea-

ture toward a prediction, but it does provide a sense of how important each feature is

for the model. Local interpretability, however, is possible with ensembles. The contri-

butions of each feature can be explored for a specific prediction, by decomposing each

prediction into a bias and feature contributions, similar to a regression function [140].

The contributions of each feature can be explored for a specific prediction, showing

why a certain instance was classified as positive or negative.

As shown by Lundberg et al., the Gini importance approach for interpreting tree

ensembles can be inconsistent when comparing different models [91]. Therefore, we

use their proposed method, Shapley additive explanations (SHAP), to achieve a con-

sistent and accurate representation of feature importance for RF and XGB, which

can be used for both global and local interpretation [92]. This method provides a

promising avenue for explaining model predictions, as the same method can explain

an individual prediction as well as generalize to groups of instances.

2.2 EXPERIMENTAL DESIGN

The concepts of model evaluation and a template ML pipeline used throughout the

experiments are presented below. The specific experiments in the subsequent chapters

then explain in detail the design for each.

2.2.1 Metrics and Evaluation

Performance evaluation is an important step when creating a classification model, as

the model must be proven to be accurate before using it to inform decision-making.

The most basic form of performance evaluation is predictive accuracy, which gives

the percentage of instances that the model correctly labeled. This can be a biased
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Table 2.1: Confusion matrix

Predicted

Values

Positive Negative

Actual

Values

Positive
True

Positive (TP)

False

Negative (FN)

Negative
False

Positive (FP)

True

Negative (TN)

measure if the classes are imbalanced. For example, if 10 out of 1,000 patients in a

dataset develop a disease, the model can simply label all 1,000 patients as negative

(not developing the disease), and still achieve an accuracy of 99%. Therefore, other

metrics based on a confusion matrix (see Table 2.1) are calculated [143]:

• Accuracy: (TP + TN)/(TP + TN + FP + FN)

• True positive rate (TPR, sensitivity, recall): TP/(TP + FN)

• True negative rate (TNR, specificity): TN/(TN + FP )

• False negative rate (FNR): FN/(TP + FN)

• False positive rate (FPR, 1 - specificity): FP/(FP + TN)

• Positive predictive value (PPV, precision): TP/(TP + FP )

• Balanced accuracy (arithmetic mean): 1
2
(TPR + TNR)

• G-mean (geometric mean):
√
TPR ∗ TNR

Confusion matrix-based metrics can also be biased, as most models produce a

score, or a probability as the output rather than a concrete class label. A discrimina-

tion threshold must be set to determine at which point the score results in a positive or

negative class value. To evaluate the accuracy of a prediction, that probability must

be converted to a binary decision as the actual class labels are binary. A probability
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above the threshold is classified as positive, while probabilities below the threshold

are classified as negative. The default threshold is 0.5, but it is advantageous to

explore the distribution of predicted probabilities of each model to select a threshold

that will result in better TPR and TNR. We do this experimentally by plotting the

predicted probabilities of instances versus their actual class membership, and then

explore the TPR and TNR of various thresholds. We choose a threshold where the

TPR is maximized without a large drop in TNR. Additionally, the threshold may be

selected by the one that produces the best value of a certain confusion matrix-based

metric (such as balanced accuracy or G-mean).

To handle multiple different discrimination thresholds, a receiver operating charac-

teristic curve (ROC) is generated [185]. The ROC curve plots the TPR (or sensitivity)

against the FPR (or 1 - specificity) against a range of discrimination thresholds. An

example ROC curve is shown in Figure 2.5, taken from Kim et al. [78]. By taking

the area under the curve (AUC), a single metric is produced that is not dependent on

the discrimination threshold. This metric is the probability that the model will rank

an arbitrary positive instance higher than an arbitrary negative instance (in terms of

the probability of an instance being positive).

In addition to reporting performance measures on the training dataset, some sort

of validation set must be used to prove that the model can accurately predict on

new instances, and is not overfit to the training data. This can be accomplished by

splitting the dataset into training and testing sets, using an independent validation

set, or by performing bootstrapping or cross-validation. Validation using bootstrap-

ping resamples the training data with replacement to create a training set, and uses

the rest of the instances as a test set. This is repeated n number of times and the

results combined to produce the final performance score. Cross-validation is similar

to bootstrapping, but divides the dataset into n folds, using n − 1 folds for training

and the final fold for testing. This is then repeated for the rest of the folds and the
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Figure 2.5: Example ROC curve [78]. A larger area under the curve indicates better

model performance.

Figure 2.6: Predictive modeling pipeline. This process is repeated for each dataset

split from cross-validation.

results are combined to produce the final performance score.

In our experiments we used both train/test splits and cross-validation for model

training and evaluation. ML pipelines are created for each model configuration to

ensure proper splitting of data in the cross-validation process. Figure 2.6 shows an

example of a model pipeline including undersampling, feature preprocessing, and

finally classifier training and evaluation. Note that each preprocessing step (both

sampling and feature processing) occurs within a single fold of cross-validation. This

is important because the full dataset cannot be processed before cross-validation

splitting. Otherwise, this would bias the fold datasets according to properties of the

full dataset.
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2.2.2 Statistical Tests

When possible in our experiments, we perform multiple runs of the same model con-

figuration (i.e., dataset, classifier, sampling, feature selection) to enable hypothesis

testing of the results. We perform Analysis of Variance (ANOVA) tests to determine

whether the means of factors are equal [58]. Additionally, post-hoc analysis is per-

formed using Tukey’s Honestly Significant Difference (HSD) test [160]. This method

compares the means of all possible pairs of factor levels and interactions. A letter is

assigned to each group of levels that are not statistically different from each other.

Welch’s two-sided t-test is used for ad-hoc significance testing [170]. The significance

level for all tests is set at 0.95.

2.3 DATA ENGINEERING AND INFRASTRUCTURE

Datasets for machine learning are increasing in both availability and size. The field

of big data has arisen in the last several years to be able to extract insight and build

models from vast amounts of data. While big data has been historically defined by

the 5 V’s (Volume, Velocity, Variety, Veracity, Value), it suffices to consider a dataset

to be “big data” when traditional computing techniques and resources are unable to

analyze or model the data. In this dissertation, the data sources used are all “big”, so

non-traditional data engineering methods were used to process the data and extract

features for use in ML models. We discuss the data processing frameworks in general

here, while the specifics of data engineering for the EHR data used for modeling is

presented in Chapter 3.

2.3.1 Hadoop and Spark

When the research for this dissertation began (circa 2014), Apache Hadoop with

MapReduce was the go-to processing engine for big data. Apache Hadoop1 is a

1http://hadoop.apache.org/
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Figure 2.7: HDFS architecture2

distributed storage system for big data that allows data from multiple sources to

be ingested and stored in the same cluster of machines [83]. Hadoop introduced

the Hadoop Distributed File System (HDFS) to allow for redundant, fault-tolerant

storage of large amounts of data at scale. Datanodes are used to distribute storage and

computation, while the Namenode orchestrates data pipelining and job scheduling.

The HDFS architecture is presented in Figure 2.7.

The original data processing engine for Hadoop was MapReduce, which is named

after its theoretical distributed programming paradigm. The general concept of

MapReduce is to send computation to the data, rather than sending data to the com-

putation (Figure 2.8). This is accomplished by performing tasks on each chunk of

data stored on the individual datanodes (“map” task), then combining the intermedi-

ate results and writing them out (“reduce” task). MapReduce writes all intermediate

computations to disk, which allows for robust fault-tolerance, but at a tradeoff of

speed. This allows processing to scale to very large datasets, but the overhead be-

comes significant when using smaller datasets. Additionally, writing pure MapReduce

programs takes very skilled programming to translate tasks into concepts involving

2http://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
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Figure 2.8: MapReduce programming paradigm 3

mappers and reducers.

Apache Spark4, a distributed computing engine, is used on top of a Hadoop cluster

for fast and fault-tolerant data processing. Spark was created at the University of Cal-

ifornia, Berkeley, with the goal of solving many problems inherent with the Hadoop

MapReduce processing architecture [181]. The project introduced the concept of Re-

silient Distributed Datasets (RDD) which store and process data in-memory across

nodes in a cluster [180]. Fault tolerance is provided by creating a Directed Acyclic

Graph (DAG) of operations and evaluating actions in a lazy manner. When a node

fails, results are re-computed using the actions stored in the DAG [72]. This signif-

icantly reduces the number of read/write operations typically used in MapReduce

programs, resulting in greater time efficiency. Spark set the Sort Benchmark5 record

in October 2014, sorting 100TB of data in 23 minutes using 206 nodes. The previous

record, held by Hadoop MapReduce, sorted the data in 72 minutes with 2,100 nodes.

Additionally, Spark sorted one petabyte in 234 minutes with 190 nodes6, though not

part of the official competition.

3https://developer.yahoo.com/hadoop/tutorial/module4.html
4http://spark.apache.org/
5http://sortbenchmark.org/
6https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html
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Figure 2.9: Spark architecture 7

While Spark can run on Hadoop clusters, it does not contain a storage layer, but

connects to various data storage mechanisms such as HDFS. The infrastructure of a

Spark cluster is similar to that of a Hadoop cluster, with a driver node to orchestrate

operations, and worker nodes that perform the data processing (Figure 2.9). Within

just a couple of years, Spark overtook MapReduce as the de-facto big data processing

engine due to its immense speed and usability improvements.

Spark is compatible with Hadoop elements such as HDFS, and can run on top of a

Hadoop cluster using its built-in job scheduler (YARN). Additionally, the package can

be downloaded and run on a single machine, and the same code can be deployed to a

Spark standalone or Mesos cluster. Spark is written in Scala and uses the Java Virtual

Machine (JVM), but the engine is accessible through Scala, Java, SQL, Python, and

R. MLlib is a component within Spark that can be used to train and evaluate ML

models using the Spark engine [100,137].

2.3.2 Cloud Computing

As data size and algorithm complexity increases, so does the need for computing

infrastructure. Cloud computing, which is infrastructure accessed through the in-

ternet, enables users to launch machines of varying size with pre-built libraries for

7https://spark.apache.org/docs/latest/cluster-overview.html
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data processing and machine learning algorithms. All data processing and ML ex-

perimentation for this dissertation was performed in the cloud using Amazon Web

Services (AWS)8. We used Spark on AWS Hadoop clusters9 to process the EHR data

and extract features. For the machine learning pipelines, we used instances from the

Amazon Elastic Compute Cloud (EC2)10. EC2 allows users to spin up different types

of machines for different workloads with various amounts of CPU cores and memory.

This allows for many machines to be run in parallel, executing various components

of an ML experiment.

Distributed computing is often required to deal with big data. While packages

such as MLlib provide distributed ways to train machine learning algorithms, there

are many more libraries and algorithms available on non-distributed infrastructures

(i.e., single machines). Additionally, certain techniques for handling class imbalance,

such as random undersampling, will actually remove majority cases from a dataset.

Therefore, a dataset can start out as “big data”, but if undersampling is performed,

the data that the machine learning model is trained on may very well be “small”. Ma-

chine learning research and model building is an experimental and iterative process;

therefore, the cost and time to train a model can be significant for big data tasks. If

a single model takes a long time to train, it can limit the amount of experimentation

that can be done to achieve an exemplary model. We found that the best approach

for our scenario was to use Spark to perform data collection and transformation and

then use non-distributed infrastructure to perform ML experimentation. By doing

so, we were able to use multiple machines to train and evaluate multiple machine

learning models in parallel rather than using a cluster of machines to train one model

at a time.

8https://aws.amazon.com/
9https://aws.amazon.com/emr/

10https://aws.amazon.com/ec2/
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2.4 SOFTWARE

The Python API for Spark was used to perform all data engineering on the Spark

clusters. A data processing library was built on top of Spark as part of this research

and is described in Section 3.2.2.

We utilized several libraries in the Python data science ecosystem to execute the

ML experiments. We used scikit-learn [114] to train and evaluate all classifiers, numpy

[165] and scipy [71] for matrix processing, imbalanced-learn [87] for data sampling,

and treeinterpreter [140] and shap [92] for explaining tree ensembles. An open-source

ML experimentation framework was built as part of this research to seamlessly launch

EC2 instances and execute model training and evaluation. The framework is available

on GitHub 11.

Results analysis, figure generation, and hypothesis testing were performed in R

[120]. We used many packages from the tidyverse12, a group of packages designed

to produce a consistent and easy-to-use API across tasks, but the notable ones are:

dplyr [172] for data manipulation and ggplot2 [171] for visualization.

11https://github.com/rikturr/aws-ml-experimenter
12https://www.tidyverse.org/
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CHAPTER 3

CLINICAL DATA PREPARATION

3.1 BACKGROUND AND MOTIVATION

In the era of personalized medicine, detailed patient data is crucial. Clinically-relevant

data points and biomarkers must be captured for a wide range of patients to enable

large-scale population health modeling. Large scale health models have the ability to

transform the way we approach medicine from a reactionary approach to a predictive

and personalized one [99]. There are various sources of patient data, such as molecular

and genetic markers, medical records, clinical registries, and even non-health related

information such as social media and lifestyle data [65]. When used in aggregate, the

data are more powerful. However, due to technology limitations and privacy policies,

it is often very challenging to collect all sources of data for each individual patient.

In this chapter, we review various data sources for clinical data, and outline the data

collection and preparation process for the dataset used in this dissertation.

3.1.1 Data Sources and Features

Patient data is collected from a variety of sources, and the availability of each varies

based on the ease of collection, cost, and data storage methods [65]. This dissertation

focuses on applications that utilize structured clinical information (not free-text or

genomic), as this data is widely collected and has the greatest value for efficient

modeling in large-scale machine learning applications.
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Clinical and Practice Data

There is a large amount of information collected about routine clinical encounters in

hospitals and private practices. Billing data, such as insurance claims for procedures

and medications, have mature data sharing standards due to their financial impact

and need for consistency. Coding standards include Current Procedural Terminology

(CPT) [14] for procedures performed by a physician, and International Classification

of Diseases (ICD) for specifying which diagnoses warrant the procedure being billed

for [110]. While these codes provide a standard for data collection, there is more

clinically-relevant information that is not captured through routine billing data. For

example, the ICD-10 code C50.111 represents “malignant neoplasm of central portion

of right female breast”, but the tumor information, progression of the patient’s health,

and the patient’s medical and social history are all unknown.

Electronic Health Record (EHR) systems have the potential to capture large

databases of clinical patient data relating to office and hospital visits, medical his-

tory, lab and pathology results, prescriptions, and social and demographic informa-

tion. The biggest promise of EHR systems is being able to collect structured data

at the point of care by medical providers, creating consistent and clinically accurate

medical datasets. This information is more advantageous for personalized medicine

applications, because clinical information is often more reliable than billing infor-

mation [106]. For example the number of adenomatous polyps, or family history

determines the risk profile for colon cancer. With melanoma, family history, prox-

imity to the equator, number of sunburns, and the number of clinically atypical nevi

are all factors that lead to developing the cancer. Due to electronic record keeping

requirements, the last few years have seen an immense increase in the use of EHR

systems [15]. The 21st Century Cures Act, passed in 2016, provided $1.8 billion to

support cancer research through the Cancer Moonshot [6]. This funding will go to

advancing precision medicine initiatives by increasing operability between EHR sys-
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tems. However, there are barriers to fully unlocking the potential of this data. EHR

systems are developed independently and often maintain proprietary standards for

data collection and storage. Furthermore, many EHRs capture clinical information

via free-text notes, making it difficult to extract structured information for use in au-

tomated decision support algorithms. While there is a great deal of research involving

Natural Language Processing (NLP) techniques to extract structured elements from

free-text data [46], the complexity of clinical information prevents data from multiple

systems or doctor’s offices to be used together.

Standards outside of financial applications exist for capturing clinical data that

is transferred between multiple parties. ePrescriptions, prescriptions that are sent

electronically from the doctor’s office to a pharmacy, use standards such as National

Drug Code (NDC) numbers and RxNorm [108] to ensure the correct medications are

given to the patient. Logical Observation Identifiers Names and Codes (LOINC) are

used to maintain consistency in the ordering and reporting of lab results and other

clinical observations [90]. The Systematized Nomenclature of Medicine (SNOMED)

maintains coding standards for clinical information such as diagnoses, family history,

allergies, social information, and others [148]. The adoption of these standards is not

consistent across medical providers, but when used, they provide valuable structured

information that can be used to advanced population health research.

Social and Lifestyle Data

Social and lifestyle data can be important to modeling the risk for certain cancers.

Smoking has been shown to be associated with lung cancer [151], alcohol consumption

with liver cancer [161], and UV light exposure with skin cancer [168]. This data can be

captured through routine clinical encounters using EHR systems, or through surveys

and questionnaires given to patients.
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Clinical Registries

Clinical registries help solve research problems by maintaining a centralized database

of clinical information specific to certain patient populations. The data points cap-

tured are often based on expert knowledge of the disease being studied, and can

be submitted through electronic connections with digital record systems or manual

input. Therefore, the data stored in these registries can be from multiple different

sources, such as demographic, billing, pathologic, and tumor information. Registries

are common for high-profile diseases, such as cancer, and many governments require

that all cancers be recorded in a local or national cancer registry [2].

Feature Types

Various features are collected through the above data sources, and can be grouped

into the following categories:

• Demographic: Patient demographic information, such as age, sex, race, and

geographic location.

• Lab: Laboratory test results, such as white blood cell count, hemoglobin, glu-

cose, triglycerides, etc.

• Histopathologic: Cancer and tumor-related information, such as the location,

tumor size, metastasis, stage, margins, etc.

• Clinical: Treatments, family history, vitals, and other routinely captured clin-

ical information that does not fit into any of the other categories.

• Lifestyle: Social history information such as smoking status and alcohol use.
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3.2 MAMEL DATASET

Modernizing Medicine, Inc. is an EHR provider for private-practice surgical special-

ties that solves many interoperability and data management problems by employ-

ing an innovative technology stack. We extracted a dataset from the de-identified

EHR data for use in this research, titled “Modernizing Analytics for MELanoma”

(MAMEL) [127]. MAMEL includes de-identified patient data from over 20,000,000

dermatology patients and serves as the base dataset for experiments presented in

Chapters 4-6. Image or genomic data are not available in MAMEL.

3.2.1 Modernizing Medicine EHR

Modernizing Medicine’s suite of applications are at the center of innovation in mobile,

cloud, and data for medicine. By being mobile-first, physicians can quickly record

precise clinical information, and spend more time advising and interacting with pa-

tients. By hosting the entire application in the cloud, all customers can easily be on

the latest version of the product, and the system architecture can scale with ease. By

providing structured input methods for most data points, the data can be consumed

by machines and algorithms to both improve the application and provide the ability

for population-level health research.

Modernizing Medicine’s Electronic Medical Assistant (EMA) Dermatology™ prod-

uct collects structured, real-world data from thousands of dermatology providers

across the U.S. The cloud-based and HIPAA-compliant EMA database houses the

data of millions of patients according to accepted data standards. For data elements

that do not have widely-used industry standards, a team of practicing dermatologists,

employed by Modernizing Medicine, maintains databases of clinical elements to allow

for dermatology-specific standardized data capture across all users (see Table 3.1).

During clinic visits, dermatology providers obtain medical history, assess clinical

presentation, perform physical examination, and make treatment recommendations
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Table 3.1: High-level data elements

Concept Standard(s)

Patient Demographics HL7 ADT

Medical/Family/Social History ICD, SNOMED

Medications NDC, RxNorm

Allergies RxNorm

Biopsy Results Proprietary

Cancers SNOMED, HL7 CCD

Patient Intake/History Proprietary

Exams Proprietary

Diagnoses ICD, Proprietary

Procedures CPT/HCPCS, SNOMED, Proprietary

based on their clinical judgment specific to individual patients at that visit. All data

are entered directly into the EHR by providers and their staff at the point-of-care.

A typical patient encounter workflow includes intake by a medical assistant, who

records medical history, chief complaint information, and assesses clinical presenta-

tion. Then, the physician records medical exams, findings, and treatments. Body

locations are captured throughout the workflow for intake, findings, and treatments.

They are recorded with an interactive anatomical atlas, a zoomable, 3D layered way

to document thousands of detailed body locations.

3.2.2 Data Processing Architecture

The entire data processing architecture is hosted in the cloud, enabling rapid devel-

opment and data access. Figure 3.1 shows a simplified view of the data architecture.

Sharded Application Servers

For load-balancing and performance, application servers are sharded by groups of

customers (medical practices). Each shard is a cluster of application servers, but

only services a specific number of customers. This allows the architecture to scale by

adding new shards as a certain number of new customers are added to the system.
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Figure 3.1: Big data processing architecture

Each shard has identical SQL database schemas, ensuring all customers have the

same experience and are using the same version of the application. These application

shards operate on a traditional relational database management system (RDBMS).

Big Data Processing

Each application shard houses terabytes of data containing billions of rows of struc-

tured clinical data. Due to the sheer size of the data and the fact that data is stored on

disparate servers, aggregate analysis with traditional database technology is limited

and time-consuming.

We utilized Apache Spark on top of Hadoop clusters to perform fast and fault-

tolerant data processing. Spark has connectors to many different data sources and

file formats, allowing for nightly batch loads from the RDBMS servers into Hadoop.

Additional processing is performed to clean and format the data into a centralized

Data Warehouse (DW).
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De-identification

For population-level healthcare research to be performed, patient data is de-identified

in accordance with the HIPAA Privacy Rule’s Expert Determination Method [5,162].

This includes removal or masking of individually identifiable information to minimize

re-identification risk. The resultant De-Identified Data Warehouse is used for all

analyses that must be performed using de-identified data.

Dynamic Dataset Generation

To facilitate research dataset creation and metadata management, a dynamic dataset

generation tool was created with Apache Spark. This tool sources from the De-

Identified Data Warehouse and creates domain-specific datasets, of which MAMEL

is one. These domain-specific datasets have many shared data elements, such as

patient demographics, clinical characteristics, and vital signs. More detailed data

points can be shared between several domain-specific datasets, and furthermore, some

data points may be specific to only one dataset. This presents a data management

challenge, as multiple unique datasets need to be created that share data points and

also have their own unique data points. These datasets must be documented well

to facilitate accurate consumption by data scientists and researchers, and must be

analyzed to ensure quality of the data.

3.3 EXPLORATORY DATA ANALYSIS

The data architecture described in Section 3.2.2 was used to generate the MAMEL

dataset. This is a large, clinically relevant, and statistically powered dataset to en-

able decision support research for dermatology patients. There are two general types

of data collected for each patient: patient demographics and clinical characteristics,

and data recorded in a patient encounter. Demographics and clinical characteris-

tics include information about the patient as a whole and aggregate lists of clinical

36



information (such as past diagnoses and pathology results). Patient encounters, or

visits, include detailed clinical elements for specific diseases the patient is treated for.

High-level data elements, along with the coding standards used for each, are given

in Table 3.1. For elements that use a coding standard and a Modernizing Medicine

proprietary standard, data can be cross-walked between the Modernizing Medicine

and industry standards.

Melanoma Identification

In this section, we perform exploratory analysis for a subset of the MAMEL pop-

ulation with a confirmed diagnosis of melanoma (the described data elements are

available for all patients, not only those with melanoma). For a patient to be in-

cluded for the analysis, an ICD10 code for melanoma must be present in the patient’s

problem list (C43, D03, Z85.820). The time period for inclusion includes all histor-

ical data through the 2016 calendar year (November 2011 through December 2016).

While ICD codes are used for standardized disease identification purposes, the EHR

records more detailed melanoma subtypes for each patient. The frequency of these

subtypes is presented in Table 3.2.

Demographics

Available demographic data are provided in Table 3.3. Of the 567,660 melanoma

patients, approximately half (49.1%) are female, and the majority (74.1%) are white.

Patient home locations are spread across the U.S. with most (43.5%) living in the

South.

Medical, Family, and Social History

Medical history elements include conditions (diseases/comorbidities) the patient has,

and past surgeries the patient has had. These conditions are marked by patients and
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Table 3.2: Melanoma subtypes

History of malignant melanoma 327,536 (57.7%)

History of malignant Melanoma in situ 138,164 (24.3%)

Malignant melanoma in situ 47,059 (8.3%)

Malignant melanoma 39,706 (7.0%)

Melanoma in situ 29,404 (5.2%)

History of lentigo maligna 13,792 (2.4%)

Melanoma 19,100 (3.4%)

Lentigo maligna 16,283 (2.9%)

Metastatic melanoma 1,602 (0.3%)

Superficial spreading melanoma 2,160 (0.4%)

Recurrent malignant melanoma 1,175 (0.2%)

Amelanotic melanoma 832 (0.1%)

Nodular melanoma 391 (0.1%)

Lentigo maligna melanoma 361 (0.1%)

Melanoma metastatic to lymph node 276 (0.0%)

Acral melanoma 306 (0.1%)

Table 3.3: Demographics

Variable Value # of Patients (%)

Total Patients 567,660

Age (years), (mean ± SD) 66.1 ± 14.1

Sex Male 288,883 (50.9%)

Female 278,588 (49.1%)

Unknown 189 (0.0%)

Race African American 745 (0.1%)

Asian 489 (0.1%)

Hispanic 8,312 (1.5%)

Other 27,239 (4.8%)

Unknown 110,261 (19.4%)

White 420,614 (74.1%)

Home Region Midwest 93,654 (16.5%)

Northeast 96,786 (17.0%)

Other 3,495 (0.6%)

South 247,148 (43.5%)

West 126,577 (22.3%)
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Figure 3.2: Medical conditions (ICD10)

medical staff from a standardized list, and can be mapped to ICD or SNOMED codes.

Additionally, ICD and SNOMED codes can be added to a patient’s medical history

separately from these standardized lists. Any diagnoses that occur in an encounter

also generate ICD codes. Family history records conditions that the patient’s family

members have (or have had). Social history includes various items related to a pa-

tient’s lifestyle, such as smoking status, sunscreen use, alcohol consumption, exercise

status, and more. Family history and social history are also recorded by standardized

lists, and can be mapped to SNOMED codes.

For uniformity in research applications, all medical conditions are mapped to

ICD10 codes, while all other items (family history, procedures, social history) are

mapped to SNOMED codes. Figure 3.2 presents the most frequent conditions. Figure

3.3 presents the most frequent SNOMED codes, broken down by category. Note that

alcohol consumption is recorded by the number of alcoholic drinks consumed per day

and is not mappable to SNOMED codes.
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Figure 3.3: Family history, procedures, and social history (SNOMED)

* Alcohol consumption not mapped to SNOMED
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Medications

Medications that are prescribed by a physician using the EHR, as well as any other

medications a patient may be taking, are available. The medications adhere to both

RxNorm and NDC standards, as provided by FirstDataBank 1. In addition, any drug

allergies recorded for a patient are available.

Pathology

While clinical lab results are standardized according to LOINC, there does not exist

a coding standard for pathology results, particularly for skin biopsies. Modernizing

Medicine maintains a structured database of clinical biopsy results, allowing physi-

cians to easily record the results of patient biopsies and allowing for clinical research

with these results.

For pathology results that come back as cancerous or precancerous, a cancer log is

used to track the cancer and submit data to state cancer registries. Variables include

diagnostic information, various tumor characteristics and treatment history. At each

visit, cancer interval history may be recorded to track any changes to the cancer site.

Many of these variables, however, are optional to record. Figure 3.4 illustrates the

pairwise completion rates of various variables for melanoma cancer entries.

Patient Intake and History

Chief complaints, history of present illness, and review of systems (ROS) encompass

the various data points that are recorded as part of patient intake in an encounter.

Generally, this is recorded by a medical assistant asking the patient a series of ques-

tions about why they are visiting the physician, the nature of their illness, and a

review of their bodily systems. All responses are recorded by body location, select or

checkbox selections, and numeric input. Any free-text input is not available in this

1http://www.fdbhealth.com/
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Figure 3.4: Pairwise completion rates of cancer variables. Bottom diagonal indicates

single variable completion rate. See [20] for more information about melanoma staging

variables.
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Table 3.4: Top chief complaints

Chief Complaint # of Patients (%)
# of

Questions

Avg. #

of Values*

Skin lesion 270,639 (47.7%) 13 14.9

Evaluation of skin lesion(s) 224,537 (39.6%) 14 13.4

History of malignant melanoma 163,221 (28.8%) 12 15.4

Skin lesions 162,666 (28.7%) 13 13.6

Full body skin examination 112,264 (19.8%) 10 8.6

Secondary complaint 97,848 (17.2%) 7 18.8

Rash 72,378 (12.8%) 12 8.8

Skin check 61,905 (10.9%) 6 7.0

History of non-melanoma

skin cancer
45,594 (8.0%) 8 11.8

Procedure (skin surgery) 31,375 (5.5%) 10 12.3

* Number of select/checkbox values for each question (excludes numeric questions).

dataset. The most frequently used chief complaints are presented in Table 3.4

The most frequently recorded ROS questions are presented in Table 3.5. Individ-

ual practices may add their own custom questions; however, these are not available

in MAMEL. Various vital signs, including blood pressure, height, weight, pulse, res-

piration, and temperature, may also be recorded in each patient encounter.

Exam, Diagnosis, and Procedure

Exams, diagnoses, and procedures (or plans) are all recorded by a physician as part of

a patient encounter. An exam is performed by the physician prior to any diagnoses or

treatments, which involves the physician noting the body elements that were exam-

ined (Table 3.6). A diagnosis is selected after the exam to note unusual findings, and

to select an appropriate procedure or plan to perform. Only one exam is performed

per visit, but multiple diagnoses can be recorded in a visit, and multiple procedures

or plans can be performed for each diagnosis. Body locations, morphologies (Figure

3.5), and outcome measurements are available for each diagnosis.
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Table 3.5: Top ROS questions

Question Yes* No*

Allergy to adhesive 76,604 (2.13%) 1,223,899 (34.0%)

Allergy to lidocaine 4,129 (0.11%) 1,278,455 (35.5%)

Blood thinners 323,756 (8.99%) 1,028,097 (28.6%)

Defibrillator 12,471 (0.35%) 1,255,446 (34.9%)

Joint aches 82,731 (2.30%) 407,896 (11.3%)

Pacemaker 46,627 (1.30%) 1,260,166 (35.0%)

Problems with bleeding 142,270 (3.95%) 1,469,346 (40.8%)

Problems with healing 84,078 (2.34%) 1,573,965 (43.7%)

Problems with scarring

(hypertrophic or keloid)
55,706 (1.55%) 1,481,044 (41.1%)

Rash 99,816 (2.77%) 1,070,650 (29.7%)

* # of Visits (%) with yes/no response

Table 3.6: Top exam elements

Exam Element # of Exams (%)

Head (including face) 2,573,010 (88.4%)

Mood and affect 2,299,077 (79.0%)

General appearance of the patient 2,298,697 (78.9%)

Orientation to time, place and person 2,266,715 (77.8%)

Neck 2,223,682 (76.4%)

Left upper extremity 2,121,534 (72.9%)

Right upper extremity 2,119,424 (72.8%)

Back 2,031,371 (69.8%)

Chest 2,021,923 (69.4%)

Scalp (including hair inspection) 1,943,372 (66.7%)
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Figure 3.5: Top morphologies by diagnosis
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Figure 3.6: Top procedures by diagnosis

Additional data for each procedure includes body locations and other procedure-

specific variables (recorded by select, checkbox, and numeric inputs). Figure 3.6 shows

the most frequent procedures for various diagnoses. For biopsy or excision procedures

that require pathology testing, the pathology record is tracked separately from the

visit, because results are obtained after the patient encounter has concluded.

Billing

Billing information is recorded as part of each visit, which includes CPT codes for

each procedure, ICD diagnosis codes, and CPT modifiers. The EHR only records

bills that are generated from each patient encounter, not what was actually paid by

the patient or insurance.
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3.4 DISCUSSION

3.4.1 Related Datasets

A PubMed search was conducted to identify review papers for melanoma retrospective

studies within the past 5 years using the following search string:

( melanoma [MeSH Terms ] OR melanoma [ Al l F i e l d s ] )

AND ( survey [ T i t l e ] OR review [ T i t l e ] )

AND ( Review [ ptyp ] )

AND (2012/03/27 [PDat ] : 2017/03/25[PDat ] )

Of the 538 results, 9 reviews of retrospective and/or surveillance studies gave

descriptive statistics of the dataset in each study [30,37,38,41,42,63,104,138,177]. In

all studies reviewed, the largest sample size of melanoma patients was 162,078 [54].

To the best of our knowledge, the 567,660 melanoma patients in MAMEL constitutes

the largest real-world observational database of melanoma patients in the world.

As seen from the above literature search, many institutions and academic centers

that study melanoma have datasets similar to MAMEL. Particularly, these datasets

contain clinical data about patients and diagnostic and treatment data about their

cancers. Institution-specific datasets have several limitations, however. While larger,

well-known centers can attract patients from different geographic regions, the care is

still localized to the specific institution. There can be bias in diagnostic and treat-

ment strategies due to the unique experiences of the physicians and researchers at the

center. Generalizability of these datasets is also limited, as each institution employs

different data collection strategies and captures disparate sets of variables. MAMEL

addresses these limitations by collecting the same variables for all patients in der-

matology offices spread throughout the U.S. This allows for research conducted with

MAMEL to be generalized, as it is representative of thousands of diverse patients and

medical practices.
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Another source of cancer data is through cancer registries, traditionally main-

tained by governing bodies. Typically, this involves physicians submitting a specific

set of data points about each new cancer they diagnose. In the U.S., each state

maintains a cancer registry and requires diagnosing physicians to report cancers to

the registry [12]. Generally, a minimal number of variables are collected in these

registries, leading to selection bias and missing data [106]. In 2010, the American

Academy of Dermatology performed a survey during its annual meeting and found

that over half of dermatology providers were not aware of reporting requirements for

melanoma [31]. Additionally, Raji et al. found that most cancer registry data is

obtained from hospitals rather than private practices [122]. This results in under-

reporting of less severe, early-stage melanomas. MAMEL addresses these issues by

providing a large nationwide database of dermatology patients, and includes many

variables beyond those collected in cancer registries.

3.4.2 Necessity of Structured and Available Clinical Data

The field of cancer risk modeling can benefit most by increasing the amount of data

that is available to researchers and machine learning experts. This advancement is

hindered by the lack of structured clinical data available in EHR systems, as many

still record free-text clinical notes. Medical providers must also utilize all the function-

alities available in an EHR system to capture the most complete and valuable data.

Paré et al. studied family practice physicians in Canada, and found that the majority

of them did not utilize all available features in their EHR systems, which included

e-prescribing, electronic lab ordering, secure data transmissions, and more [112]. Ad-

ditionally, data privacy concerns often result in institutions or cloud-based EHR sys-

tems keeping terabytes of data locked away in private servers, especially if the data

is free-text, as it is especially difficult to de-identify clinical notes [150]. Research

in anonymization techniques must continue to help alleviate these concerns [81], as
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well as policy advancements to allow for more data sharing without breaching patient

privacy.

While the adoption of EHRs has increased due to governmental requirements,

the EHR industry is fragmented and data sharing is difficult. Standards need to be

developed and enhanced to allow sharing of detailed clinical information. Through a

study of mental health patients in Massachusetts, Madden et al. found that over half

of the incidents of outpatient care were not captured in the patients’ EHR system,

as they occurred outside of the medical practice [94]. These data points were still

covered, however, by insurance claims data. Ahmadian et al. specifically studied the

data standards used in clinical decision support systems, and found that many users of

these systems were limited by incomplete data sharing standards and capabilities [10].

Due to practical necessity and compliance requirements, EHR systems record

patient information beyond demographics such as family history, smoking status,

and alcohol use. These can provide valuable insights for modeling clinical data, as

there may be hidden biomarkers that contribute to medical conditions. Additionally,

EHR systems record real-world clinical data at the point-of-care, making models built

from these datasets more generalizable to the public. Clinical trials and prospective

observational studies may have small cohort sizes and can be biased towards the

patients in the study.

Data must also be shared between clinical and non-clinical settings. For example,

four studies from South Korea used data that were linked from a physical health

examination, the national cancer registry, and the national death registry [50, 111,

145,179]. This allowed for large-scale population health analysis, and they were able

to build personalized predictive models for many different types of cancers. Razavi et

al. were able to use linked data from the breast cancer registry, tumor registry, and

death registry from Sweden [123].

Due to the overhead of prospective data collection, privacy and legal issues, and
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modeling difficulty, studies often analyze data from many years in the past. This is not

desirable, as clinical guidance is constantly changing based on medical breakthroughs

and clinical trial results. A model built from data that is ten years old will be

biased towards the treatments used and knowledge from that era, and may not be

as accurate for current patients. Operational, policy, and data management efforts

must be made to enhance the speed at which models can be built from current

data. Additionally, online models can be built to utilize real-time data coming from

EHR systems. While this requires major enhancements in infrastructure and data

management, it will provide the most valuable models for predicting the risk and

recurrence of different types of cancers. All experiments conducted as part of this

dissertation utilized data from MAMEL that was updated no more than one year

before the time of the experiment. Therefore, the risk models produced were able to

capture up-to-date treatment patterns and patient information.

3.5 CHAPTER SUMMARY

We presented the Modernizing Analytics for MELanoma (MAMEL) dataset: a real-

world, dermatology-specific research dataset specifically crafted to advance data min-

ing and machine learning research in the field of melanoma diagnosis, analysis, and

treatment. This dataset was collected and curated from Modernizing Medicine’s EMA

Dermatology™ application, a cloud-based Electronic Health Record (EHR) platform.

A big data processing architecture, built on Apache Hadoop and Apache Spark, was

used to collect all patient data, identify patients for the MAMEL dataset, and create

and document all data elements. This chapter outlined the application and data pro-

cessing architectures and provided an exploratory analysis of data elements available

in MAMEL. Subsequent chapters utilize datasets derived from MAMEL for experi-

mentation.
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CHAPTER 4

PREDICTING SENTINEL LYMPH NODE METASTASIS IN

MELANOMA

4.1 BACKGROUND AND MOTIVATION

Metastasis of the sentinel lymph node (SLN), the closest lymph node to a cancer on

the skin, is one of the most important prognostic indicators for melanoma survival

[95]. The 5-year survival rate for patients with an early melanoma detection is 98%,

while the rate drops to 62% if the cancer spreads to a lymph node. Therefore, early

detection and treatment of melanoma is paramount. If there is positive sentinel

lymph node metastasis, this means that cancer cells have spread beyond the location

of the melanoma on the skin [84]. Metastasis is determined by taking a biopsy of

the sentinel lymph node, which adds additional cost to treatment (beyond the initial

surgical excision of the tumor) [98]. If the biopsy returns positive for metastasis, a

patient can undergo an elective lymphadenectomy (lymph node dissection) to remove

potential cancerous lymph nodes. For thin melanomas (<1mm), the risk of metastasis

is low, so an SLN biopsy is only recommended when additional risk factors are present

for the patient [174]. Traditional guidance is to not perform a sentinel lymph node

biopsy for these tumors, but some studies have shown that thinner melanomas can

metastasize [182].

The goal of a sentinel lymph node metastasis prediction model is to guide physi-

cians on whether or not to suggest an SLN biopsy for a newly diagnosed melanoma.

Current guidelines suggest that thick melanomas (>1mm) should be biopsied [182];

however, if a model can accurately predict low risk for these cancers, the procedure
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can be foregone, saving healthcare costs. More importantly, high risk patients with

thin melanomas (<1mm) can be identified for an SLN biopsy. Then if the biopsy

returns positive, the patient can undergo more targeted treatments for the cancer

before it spreads further. This latter case has higher consequences than the first, as

an SLN biopsy is a generally safe procedure, so false positives from the model are

not that dangerous. A false negative, however, means that a patient with a metas-

tasized cancer may not know about it until it is too late for treatment. Therefore, a

model with high sensitivity (TPR) is the ultimate goal, especially for thin melanomas.

Most patients with thick melanomas (>1mm) are recommended for an SLN biopsy,

so a model with high specificity for thick melanomas would save healthcare costs by

avoiding an unnecessary procedure.

In this chapter, we examine MAMEL data related to melanoma patients and

lymph node metastasis [128]. We explore a heuristic model that reflects current clini-

cal practice as well as several machine learning algorithms trained on the dataset. Val-

idation of the models show that the machine learning algorithms achieve an AUC com-

parable to the heuristic model, but significantly higher sensitivity for thin melanomas

and significantly higher specificity for thick melanomas. This shows that to calculate

the probability of SLN positivity, the heuristic model is an accurate measure for the

majority of melanomas. To discriminate between positive and negative metastasis,

however, the heuristic model does not work well, especially for thin melanomas. In

this case, the models we propose can provide valuable aid to physicians when deciding

whether or not to recommend an SLN biopsy for patients with thin melanoma. This

study is not the first effort to build a model to predict SLN status; we present an

existing model in Section 4.2. Descriptive statistics about the SLN dataset, experi-

mental design, and methods are provided in Section 4.3, and results and discussion

in Section 4.4.
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Figure 4.1: Nomogram model online form1

4.2 RELATED WORKS

Wong et al. developed a predictive model to determine sentinel lymph node status

in melanoma patients [175], and several other studies applied the model to different

melanoma populations [113, 115, 176]. The fitted model was developed into a nomo-

gram [19], a visual tool to make predictions from several variables. Additionally,

the model is publicly available for use by patients and physicians through an online

form (Figure 4.1). Throughout our study, we refer to this model as the “nomogram

model.”

The study was published in 2005, and compares the predictive accuracy of a

logistic regression model to staging guidance from the American Joint Committee on

Cancer. The five selected variables were age, thickness, Clark level, body location,

and ulceration. This study did not have many patients with thin melanomas (186

out of 979 total patients) that would benefit from this model. It has been shown that

thicker melanomas (>1mm) warrant an SLN biopsy, so it is difficult to generalize

1https://www.mskcc.org/nomograms/melanoma/sentinel-lymph-node-metastasis
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the nomogram model. Additionally, an author from Wong et al. suggested that

the model is not used in clinical practice, but rather a rough calculation using the

tumor depth is used to determine the probability of SLN metastasis (D. Coit, personal

communication, June 27, 2017).

While a prediction model for SLN metastasis does exist, building a new model

with the MAMEL dataset addresses several limitations identified in Wong et al. The

nomogram model was built using a patient cohort from a single cancer center, and has

been validated on four other localized cohorts. The MAMEL data includes patients

from dermatology offices throughout the U.S., reducing bias in the data and allowing

for more generalized testing and validation. The nomogram model was built from 979

patients, and validated on cohort sizes of 124 [176], 218 [115], 543 [113], 3,108 [175],

and 3,286 [175] patients. This study includes over 5,000 patients from the MAMEL

dataset with a recorded SLN status. The nomogram model collected 13 variables

to build the model, and selected 5 in the final model. MAMEL collects thousands

of structured clinical variables that can be used to build a model. While not all 13

variables that Wong et al. initially used are available in MAMEL, the final 5 variables

are. Additionally, since the data is available as part of an EHR system, a small number

of variables do not need to be selected to simplify a web input form or nomogram. If

the prediction model is built into the EHR application, any number of variables can

be used as input since they are readily available in the application’s database. The

nomogram model only considered patients with ≥ 1mm or Clark level II-V, resulting

in only 19% of patients having thin melanomas. We include all melanomas with an

SLN biopsy result recorded, 54% of which are thinner than 1mm.

The dataset in this study, derived from the MAMEL dataset, includes real-world

data from diverse practices throughout the country. This allows a model built from

this data to be generalized to a wide range of patients. Additionally, we do not limit

inclusion based on tumor thickness, providing guidance for thinner and less advanced
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melanomas.

4.3 MATERIALS AND METHODS

Data

Patients were included in this study if they had a cancer log entry for melanoma and

the following data points collected: (1) SLN biopsy result, and (2) tumor thickness

(Breslow thickness). Since the data is collected from a real-world EHR system, records

with inconsistent data were excluded. This could be due to a patient following up

with a dermatologist over an extended period of time with variations in data that are

recorded from multiple patient intakes or cancer log records.

For each patient, the following structured data was collected: age, sex, race,

melanoma family history, degree of relation to the relative with melanoma, geographic

location (U.S. state), height, weight, Fitzpatrick skin type, diagnoses (ICD10 codes),

procedures (SNOMED codes), family history (SNOMED codes), drug allergies, and

prescriptions. For each individual melanoma the following structured data was col-

lected: subtype, date of biopsy, body location, Clark level, tumor depth, mitotic rate,

ulceration, presence of tumor-infiltrating lymphocytes, and SLN biopsy result. Tables

4.1-4.2 outline several important demographic and clinicopathologic features for the

patients in the study.

Since literature recommends that melanomas thinner than 1mm may not warrant

an SLN biopsy, we split the data into three subsets to explore classifier performance

on each group: (1) all records, (2) melanomas ≤1mm, and (3) melanomas >1mm.

Table 4.3 shows the class distributions for each dataset.

Machine Learning Techniques

For each dataset, we built a logistic regression, decision tree, and random forest model

to predict the SLN biopsy result. Due to the class imbalance present, particularly in
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Table 4.1: Demographics

Variable Value n (%)

Total Patients* 5,105

Age (years) (mean ± SD) 63.2 ± 14.8

Sex Female 2,428 (47.56%)

Male 2,677 (52.44%)

Race Asian or African American 11 (0.3%)

Hispanic 67 (1.3%)

White 4,008 (78.5%)

Other 281 (5.5%)

Unknown 738 (14.5%)

Home Region Midwest 1,144 (22.4%)

Northeast 843 (16.5%)

South 2,102 (41.2%)

West 994 (19.5%)

Unknown 22 (0.4%)

Home Division East North Central 747 (14.6%)

East South Central 310 (6.1%)

Middle Atlantic 586 (11.5%)

Mountain 559 (11.0%)

New England 257 (5.0%)

Pacific 435 (8.5%)

South Atlantic 1,401 (27.4%)

West North Central 397 (7.8%)

West South Central 391 (7.7%)

Unknown 22 (0.4%)

Skin Type I 107 (2.1%)

II 1,378 (27.0%)

III 91 (1.8%)

IV-VI 8 (0.2%)

Unknown 3,521 (69.0%)

Height (m) (mean ± SD) 1.7 ± 0.1 (88.9% unknown)

Weight (kg) (mean ± SD) 83.2 ± 18.5 (87.8% unknown)

* 24 patients have more than one melanoma recorded, resulting in 5,126 total records.
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Table 4.2: Tumor characteristics

Variable Value n (%)

Total Records 5,126

Subtype Acral Melanoma 14 (0.3%)

Lentigo Maligna Melanoma 90 (1.8%)

Melanoma (Not Subtyped) 4,160 (81.2%)

Nodular Melanoma 184 (3.6%)

Superficial Spreading Melanoma 678 (13.2%)

Clark Level I 15 (0.3%)

II 234 (4.6%)

III 290 (5.7%)

IV 612 (11.9%)

V 19 (0.4%)

Unknown 3,956 (77.2%)

Thickness T1 2,757 (53.8%)

T2 1,526 (29.8%)

T3 704 (13.7%)

T4 139 (2.7%)

Mitotic Rate < 1/mm2 1,037 (20.2%)

≥ 1/mm2 498 (9.7%)

Unknown 3,591 (70.1%)

Ulceration Absent 3,270 (63.8%)

Present 515 (10.0%)

Unknown 1,341 (26.2%)

TILs Absent 610 (11.9%)

Brisk 364 (7.1%)

Non-Brisk 736 (14.4%)

Unknown 3,416 (66.6%)

SLN Biopsy Result Negative 4,599 (89.7%)

Positive 527 (10.3%)

Table 4.3: Class distributions

Thickness Negative SLN Biopsy Positive SLN Biopsy Class Distribution

≤1mm 2,665 92 3.3%

>1mm 1,934 435 18.4%

All 4,599 527 10.3%
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the <1mm dataset, we performed RUS to achieve three different positive class ratios:

50%, 35%, and 20%. We also performed a run of each model without sampling

to determine its impact. All categorical feature values were converted to one-hot

encoded features, resulting in 2,100 total features available for the experiment. For

binary variables, the second extracted feature was removed since it contains the exact

inverse of the first extracted variable. Missing values in categorical features were

treated as a value (extracted as a new feature), and mean imputation was performed

for missing values in numeric features. Features with zero variance (same value in all

samples) in each training split were removed. Feature ranking was performed using

the χ2 statistic and the top K features were selected using K values of 5, 10, 20,

30. Additionally, one run was performed without the feature ranking technique (only

remove features with zero variance).

Models were built using 5 iterations of 5-fold cross-validation and evaluated using

the area under the ROC curve. Across the 3 datasets, 3 classifiers, 4 class balances,

and 5 different feature selection strategies were applied, resulting in over 4,500 total

models built. The best performing configuration (according to AUC) was selected for

each dataset and model, and 30 runs of a 70/30 stratified train-test split was used to

validate the models.

Tumor thickness is an important prognostic factor for melanoma, and many clini-

cal decisions are made based on this thickness. Traditional guidance is for physicians

to biopsy a tumor >1mm, but there are not many studies providing evidence-based

guidance for the thinner melanomas. Therefore, a dermatologist may only suggest an

SLN biopsy for a thin melanoma if there are other risk factors present in the pathol-

ogy of the tumor or the patient’s background. A rough estimate of SLN positivity is

to multiply the thickness by 10 to achieve a percentage (or divide by 10 to get the
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Figure 4.2: Probability of SLN metastasis vs. tumor thickness. The line indicates

estimated probability from the heuristic model. The points indicate the actual prob-

ability within each 0.5mm group of thickness (R2 = 0.934).

decimal value):

P (SLN = positive) =
thickness

10
(4.1)

Upon investigation of this heuristic model, we found it to have good predictive

performance, especially for a model using a single variable. Figure 4.2 shows the

probability of metastasis from the MAMEL dataset versus the probability calculated

by this heuristic model. This benchmark is referred to as BT (Breslow thickness) in

subsequent figures and text.

In addition to model selection, the cross-validation results were used to select the

decision threshold for each model. For the full and ≤1mm datasets, the best threshold

was one in which the sensitivity is maximized without a large drop in specificity. For

the >1mm dataset, the opposite was achieved. This is due to the nature of clinical
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Figure 4.3: ROC curves for the benchmark model

response to differing thicknesses of melanoma; melanomas ≤1mm that are marked

as negative could be metastatic melanomas that are missed. For those >1mm, most

physicians recommend an SLN biopsy, so the metastasis would be detected. A higher

specificity for thicker melanomas helps avoid having to perform the biopsy for very

low-risk patients.

4.4 RESULTS AND DISCUSSION

Each model built in this study was compared to the benchmark heuristic model

presented in Equation 4.1. ROC curves for the benchmark model on each dataset are

presented in Figure 4.3. The model achieves good AUC on the full dataset (0.769)

and poorer results when the dataset is stratified on tumor thickness (0.666 and 0.636).

To simulate clinical decision-making, the discrimination threshold for the benchmark

model was set to 0.1, which is equivalent to a 1mm thickness [182]. The effect of this

discrimination threshold is illustrated in Figure 4.4; the model achieves 0% sensitivity

for the ≤1mm and 0% specificity for the >1mm dataset.
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Figure 4.4: Predicted probabilities of each sample using the benchmark model. The

dotted red lines indicate the discrimination threshold (0.1). Samples above the line

are classified as positive, while samples below the line are classified as negative.

The best performing models (as measured by cross-validation AUC) were chosen

for each classifier and dataset, along with a discrimination threshold to use in the

validation step. The selected model configurations are displayed in Table 4.4. The

AUC values of the models compared to the benchmark are shown in Figure 4.5, along

with the sensitivities and specificities in Figure 4.6. Table 4.5 displays all validation

metrics and the result of a two-sample t-test between the benchmark results and each

model.

Most machine learning models for each dataset did not have a significantly higher

or lower AUC than the benchmark. Logistic regression on the >1mm dataset was the

only machine learning model that had a significantly higher AUC than the benchmark.

Regarding sensitivity and specificity, however, the machine learning models signifi-

cantly outperformed the benchmark in certain crucial scenarios. For thin melanomas,

the benchmark had 100% specificity but 0% sensitivity. This is problematic as all thin

melanomas that indeed have SLN metastasis would be missed. The random forest

model was able to achieve a 78.9% sensitivity and a 49% specificity, catching these
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Table 4.4: Model configurations

Dataset Classifier Undersampling Ratio Top K Features Threshold

All LR 0.5 5 0.4

Tree None 10 0.1

RF 0.5 All 0.4

≤1mm LR None All 0.02

Tree None All 0.04

RF 0.35 All 0.3

>1mm LR 0.2 5 0.2

Tree 0.2 5 0.2

RF 0.5 All 0.5

Figure 4.5: AUC values of each selected model compared to the benchmark. Lines

above the bars indicate the end of the 95% confidence interval.

62



Figure 4.6: Sensitivity and specificity values of each selected model compared to the

benchmark. Lines above the bars indicate the end of the 95% confidence interval.

Table 4.5: Validation results

Dataset Model Sensitivity Specificity
Balanced

Accuracy
AUC

All BT 0.830 0.578 0.704 0.769

LR 0.835 0.544 0.689 0.772

DT 0.658 0.737 0.698 0.764

RF 0.868 0.472 0.670 0.745

Thickness ≤1mm BT 0.000 1.000 0.500 0.666

LR 0.667 0.574 0.620 0.659

DT 0.433 0.576 0.510 0.573

RF 0.789 0.490 0.640 0.676

Thickness >1mm BT 1.000 0.000 0.502 0.636

LR 0.559 0.667 0.613 0.667

DT 0.494 0.701 0.598 0.633

RF 0.593 0.594 0.594 0.631

Bold or italic text indicate values significantly better or worse than the benchmark, respectively (p <0.05).
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Table 4.6: LR model coefficients: Full dataset

Variable Weight

Intercept 0.1174

Thickness 0.8513

Ulceration=Present 0.4203

Age -0.0215

Mitotic rate ≤1mm2 -0.9622

ICD10=L82.0 -1.061

very important cases. For thick melanomas, the benchmark had 100% sensitivity and

0% specificity since all cases are marked as positive. Only 18% of thick melanomas

were actually metastatic (Table 4.3), resulting in a very high false-positive rate. The

logistic regression model was able to achieve more balanced hit rates: 55.9% sensitiv-

ity and 66.7% specificity.

No tree models achieved a significantly higher AUC than the benchmark, and

a couple performed significantly worse. This shows that there is a strong linear

relationship between the tumor thickness and probability of SLN metastasis, as seen

in the model coefficients for the LR model on the full dataset (Table 4.6). While

the selected LR configuration for the ≤1mm dataset included all non-zero variance

features (1,615), Table 4.7 shows the coefficients for an LR model with the top 10

features selected (AUC=0.651, p=0.153). It is interesting to note here that the tumor

thickness is not part of the model, indicating that there are indeed other factors

contributing toward SLN metastasis for thin melanomas.

We were not able to compare models built in this study to the nomogram de-

veloped by Wong et al. [175], as we were not able to retrieve the model coeffcients

from the authors. Although MAMEL is a de-identified dataset, we opted to not

run each sample through the online model due to patient privacy concerns and time

constraints. Through personal communication with an author, however, we under-

stood that the team instead estimates the probability of a positive sentinel node to
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Table 4.7: LR model coefficients: ≤1mm

Variable Weight

Intercept -0.2166

ICD10=L85.3 1.195

Clark level=IV 1.073

Home division=Pacific 0.5977

ICD10=D48.5 -0.3681

ICD10=L82.0 -0.7769

ICD10=Z87.2 -0.8275

ICD10=D23.5 -0.9812

Body zone=Face -0.9996

SNOMED=450434000 -1.077

Mitotic rate≤1mm2 -1.545

be 10 times the tumor thickness (D. Coit, personal communication, June 27, 2017).

We found that this heuristic actually performed on par with any machine learning

model we built for the entire population. Considering clinical practice, we found it

necessary to focus specifically on thin melanomas as these are the cases that would

benefit from a prediction model. Most physicians will always recommend an SLN

biopsy for thick melanomas [182]. The population in Wong et al. was collected from

a cancer institution, which limited the number of low-risk melanomas that were seen.

MAMEL, however, is collected from a private-practice dermatology EHR system that

sees many more average and low-risk melanomas. In Wong et al., 19% of cases were

≤1mm thick compared to 54% of cases in the present study. Additionally, there was

a higher percentage of SLN positivity in Wong et al. versus this study (16% to 10%).

There are several limitations in this study, mainly relating to the nature of the data

collection. Since the data is collected from a real-world private-practice EHR system,

there are many missing values in variables that are clinically relevant for melanoma

(Table 4.2). As this was a retrospective real-world analysis, the data completeness

does not have the same rigor of a prospective study, potentially reducing the quality

of the data collected. Additionally, since traditional guidance is to not biopsy thin
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melanomas, the sample size of thin melanomas with SLN positivity is very small.

Future work involves improving the algorithms to be able to deploy a predictive

model in the clinical setting. We have shown that there is a strong linear relationship

between tumor thickness and the probability of SLN metastasis; models that exploit

this linear relationship should be studied further. We can also employ regularization

methods to reduce the impacts of anomalous feature values. More advanced machine

learning techniques can be used, such as model-based feature selection techniques

and deep learning algorithms. Rather than predicting sentinel lymph node status

alone, a model can be developed that also predicts hematogenous spread. It has been

shown that about 50% of metastatic melanomas are distant, satellite, or in-transit

metastases [86]. A model that predicts SLN metastases in addition to hematogenous

metastases would help physicians understand the progression of melanoma and treat

patients accordingly.

4.5 CHAPTER SUMMARY

Sentinel lymph node metastasis is one of the most important prognostic indicators

for melanoma survival. We presented several machine learning models for predicting

SLN metastasis using data from MAMEL. The class label is the result of a sentinel

lymph node biopsy, an elective procedure that can be performed for newly-diagnosed

melanoma patients to determine if there is metastasis in the nearest lymph node. We

showed that a simple model, using solely Breslow thickness, can achieve predictive

performance (AUC=0.769) comparable to a logistic regression model using 5 features

(AUC=0.772, p=0.518). Current clinical recommendations are to perform a biopsy

for patients with melanomas thicker than 1mm; however, when applying this 1mm

threshold to the simple thickness model, it achieved 0% sensitivity for melanomas

<1mm. Using a random forest model, we achieved 78.9% sensitivity (p<0.001) for

melanomas <1mm. This chapter shows that the probability of sentinel lymph node
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positivity is indeed linearly correlated to the tumor thickness (R2=0.934), and that

machine learning models can effectively detect thin melanomas that warrant an SLN

biopsy.
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CHAPTER 5

PREDICTING MELANOMA RISK

5.1 BACKGROUND AND MOTIVATION

The goal of cancer risk prediction is to determine if a given patient will develop

cancer (or recur) at some point in the future [152]. The problem is distinct from

patient identification (also called phenotyping [146]), as the goal is not to determine

if a patient has a certain disease at the present moment, but to determine if the patient

will develop it in the future. This task can be formulated as a supervised learning

problem, where the input data are certain demographic and clinical elements (e.g.

age, sex, and treatment history), and the output variable is the probability that the

patient will develop the cancer at some point in the future. This probability can

be tracked over time, assigning risk as time increases. The problem can also be

formulated as a binary classification task, attempting to ascertain whether or not a

patient will develop cancer at a specified point in time (i.e. developing the cancer

within the next five years). A prediction model is built by supplying historical data

from patients that did, or did not, develop the cancer in question. Statistical and

machine learning techniques are used to fit a model to this historical data (i.e. training

data). Then, to prove the model will be generalizable to different patient populations,

a validation set (or multiple validation sets) is used to determine the performance of

the model. When the performance of the model is adequate, based on several metrics,

it can be deployed into clinical settings to help inform patients and providers. For

more information about predictive modeling for medicine in general, see [25,152].

Accurate models are clinically relevant, as they can provide personalized treatment
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plans for patients at risk for a new cancer or recurrence of cancer in remission. There

are various types of cancers, many of which have a very low incidence rate. It is

not economically feasible to screen all patients visiting a doctor for a wide range of

different diseases [50, 179]. Thus, a model that can predict future development of

cancer based on regularly captured clinical biomarkers, demographic, and lifestyle

information is of high value to a healthcare system. As the model is built and tested,

it can be used to flag high-risk patients for enrollment in a surveillance program,

catered towards each patients’ individual risk and clinical profile [147]. Therefore, a

model must be applicable to large populations of patients, given that cancer is still a

relatively rare disease but one of high importance to humanity.

If a large quantity of consistent patient data can be collected for a predictive model,

computational challenges arise when transforming the data and training a machine

learning algorithm. First, data elements must be extracted from the data collection

system and transformed into a tabular format to be passed to a machine learning

model. The size of the dataset and complexity of the machine learning algorithm can

subsequently introduce computational challenges. The cloud enables users to launch

machines of varying size with prebuilt libraries for machine learning algorithms. This

technology can be utilized to evaluate a wide range of algorithms to produce the

most accurate model. When dealing with big data, or data that cannot be processed

through traditional architectures, predictive accuracy is not the only consideration

when choosing classifiers and machine learning techniques; computational complexity

and cost must also be factored in the selection process.

In this section, we use MAMEL data to build classification models for melanoma

risk. Data from real-world outpatient dermatology visits are used to identify variables

that are most indicative of the patient developing melanoma in the future. We take

a data-first approach by creating a large vector of data for each patient and letting

the algorithms determine which features are important. This allows us to utilize the
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full breadth of data collected by the EHR system to inform patients and providers

about melanoma risk using the patient’s own data. Therefore, it is not required for

the dermatology patient to present with any concerns for melanoma. The model

examines data from routine office visits and provides a risk score for the patient, to

inform future follow-up visits. We explore the features selected by the model, and

provide examples of predictions made using real-world patient data. A comprehensive

literature review of cancer risk models is presented in Section 5.2, followed by our

own experiments in Sections 5.3-5.4, with a dedicated analysis of the interpretability

of the various classifiers produced (Section 5.5).

5.2 LITERATURE REVIEW

In this review, a distinction is made between models that attempt to predict if a

patient will develop a cancer in the future (risk prediction), and those that predict

whether or not a patient will relapse after a potentially-curative treatment (recurrence

prediction). These problems are distinct in that they often have different types of

input data. For example, a risk prediction model will not have any variables about

cancer in the patient, as the patient has not yet developed cancer (although family

histories of cancer would be relevant). For recurrence models, as will be seen in the

papers studied, information about the tumor and treatments for the cancer are often

chosen for inclusion in the models [78]. While the problem scenarios are distinct, the

approaches to solve them can be very similar.

5.2.1 Methodology

We conducted a comprehensive review of literature related to data mining for health-

care applications, and filtered the list of works to those relevant for the experiments

conducted in this work. Therefore, works focusing on other diseases besides cancer,

and those using non-clinical data (such as genomic or proteomic data) or primarily
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free-text clinical notes were excluded.

Papers were first identified by browsing through related journals, followed by a

breadth-first search of articles using Pubmed1 and Google Scholar2. Keywords used

included but were not limited to: “cancer risk”, “cancer recurrence”, “cancer predic-

tion”, “machine learning”, “data mining”, and permutations of these keywords. Then,

each paper identified was reviewed for relevance and a decision to keep or remove the

paper was made. For each paper that was kept, related articles and articles citing

the paper (utilizing search features available in both Pubmed and Google Scholar)

were reviewed for relevance. This process was repeated until no new papers could be

identified, and the results of the review are presented in Sections 5.2.2-5.2.3. There

are many different types of cancers, with different risk factors and treatment options,

resulting in researchers with specific and invaluable knowledge of a specific type of

cancer. Therefore, each paper focuses on a particular type of cancer for modeling,

with the exception of Bayati et al., who attempted to predict cancer in general [24].

No melanoma risk studies were identified through this search, but a follow-up inves-

tigation revealed several papers that are reviewed separately in Section 5.2.4.

5.2.2 Models in Practice

Several prognostic and predictive models are used, or available for use, in clinical

practice. Some of these are not based on statistical or machine learning models, but

rule-based methods or clinical guidelines.

Cancer Staging

The TNM Classification of Malignant Tumors is an international standard developed

and maintained by the American Joint Committee on Cancer (AJCC) and Union for

International Cancer Control (UICC) to describe the stage of a cancer tumor when

1http://www.ncbi.nlm.nih.gov/pubmed
2https://scholar.google.com/

71



it is diagnosed. This standard measures the size of the primary tumor (T), spread

to regional lymph nodes (N), and the presence of distant metastasis (M) [48]. The

staging is used to bucket patients into mutually exclusive groups based on their tumor

characteristics, providing a means to determine prognosis of the disease, including the

risk of recurrence [28,29]. Several papers, namely Cahlon et al. [29], Weiser et al. [169],

Bochner et al. [67], and Marelli et al. [97], built models to predict the risk of cancer

recurrence, and found that their models were more accurate than using TNM staging

alone.

Nomograms

A nomogram is a graphical calculating device that allows a mathematical equation

to be answered by aligning a straight-edge across values of different inputs, with

the end of the straight-edge pointing to the result of the equation (see Figure 5.1a).

Nomograms for oncology, widely studied by researchers at the Memorial Sloan Ket-

tering Cancer Center, can produce succinct formulas that determine a patient’s risk

for certain clinical events, including the development or recurrence of a cancer [19].

Rather than utilize the archaic means of aligning a ruler to a page, they publish these

nomograms as online forms to be used by both physicians and patients3 (see Figure

5.1b). These nomograms were built using regression techniques, such as Cox propor-

tional hazards or competing risk survival analysis, with the aim to use the minimum

number of variables necessary to produce accurate results. Nomograms specific to

cancer recurrence prediction were developed for: sarcoma (Cahlon et al. [29]), colon

cancer (Weiser et al. [169]), breast cancer (Rudloff et al. [139]), and bladder cancer

(Bochner et al. [67]).

3https://www.mskcc.org/nomograms
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(a)

(b)

Figure 5.1: Example Nomogram [29]. (a) Manual nomogram. Lines are drawn from

each feature to a particular score at the top line depending on the value of that feature.

These points are then added up to reveal the predicted recurrence probability at either

three or five years. The two styles of arrows indicate two different predictions made

using the nomogram. (b) Online version of the nomogram.

73



Breast Cancer Recurrence Models

Kim et al. [78] built a model for predicting breast cancer recurrence, and compared

it to several other established guidelines: St. Gallen, Nottingham Prognostic Index

(NPI), and Adjuvant! Online. The St. Gallen International Expert Consensus, in

2009, published several factors that contribute to a low-risk of recurrence, thus inform-

ing the use of adjuvant therapies post-surgery [59]. Researchers at the Nottingham

City Hospital, in 1982, conducted retrospective multivariate analysis of breast cancer

patients to build a prognostic model for survival, resulting in the NPI [57]. Kim et al.

used this score to group patients into risk groups for recurrence. Cirkovic et al. also

used the NPI index as an input to their breast cancer relapse prediction model [36].

Adjuvant! Online is a web-based tool for determining survival and recurrence rates

based on several factors4 [107]. Kim et al. found their SVM model to be superior

to the three established models, indicating that there is more research to be done to

build clinically effective recurrence predictors.

5.2.3 Cancer Risk Models

We found several studies that trained statistical and machine learning models to pre-

dict cancer risk [126,131]. All articles in this review build predictive models to deter-

mine if a patient will develop a cancer, or recur, in the future. The techniques used,

however, differ between studies. Generally, a study used either classical statistical

methods, such as regression and survival analysis, or machine learning methods, such

as ANN, SVM, or tree models. A few studies used hybrid approaches or compared

statistical and machine learning methods. Studies produced by the same institution

tended to use the same methods. For instance, four studies from Memorial Sloan

Kettering all used survival analysis techniques, and four studies from the National

Cancer Center in Korea also used survival analysis techniques.

4https://www.adjuvantonline.com/
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Figure 5.2: Feature selection and model algorithm methods. Studies with more than

one method are counted multiple times. Feature Selection indicates use of a fea-

ture ranker or feature subset-selector. Left: Model Algorithms are grouped by their

algorithm family. Right: Each model algorithm is outlined.

The goal of our analysis in this section is to provide a snapshot of the current

techniques used in the literature and discuss gaps in research, but not to extensively

describe the theory and implementation of the models. Section 2.1 can be referenced

for algorithm theory.

Figure 5.2 illustrates the different statistical, machine learning, and feature selec-

tion methods used in the articles reviewed. The most widely used model combination

is Cox regression, and most of those models utilized univariate analysis to select im-

portant features. SVM models tended to use feature rankers, subset selectors, or

model-based feature selection.

Statistical and Machine Learning Models

Modeling of disease risk or recurrence is easily framed as a survival analysis problem,

and many studies utilized survival analysis techniques to construct their predictive

models. Cox proportional hazards [39] is typically the model of choice, as it allows for

time censoring and multivariate analysis. To handle a large number of patient deaths
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not due to the recurrence of sarcoma, Cahlon et al. used a competing risk survival

analysis model [79], treating non-recurrent death as a competing risk [29]. This study

is the only one profiled performing survival analysis with a model different than the

Cox proportional hazards model.

El-Serag et al. used logistic regression models to predict the development of

Hepatocellular Carcinoma (HCC), a form of liver cancer, within 6 months of an α-

fetoprotein (AFP) test [49]. Among other models, Cirkovic et al. built a logistic

regression model to predict recurrence after surgery for breast cancer [36]. Bayati

et al. compared a traditional LR model to their own improved LR models based

on multi-task learning, as their model attempts to predict risk of multiple different

diseases (of which cancer is one) [24].

Tseng et al. found that their C5.0 decision tree model performed best when

selecting two features to model the risk of recurrent cervical cancer [159]. Radespiel-

Tröger et al. constructed decision trees to model the recurrence of colon cancer within

five years of curative resection [121]. Cirkovic et al. and Ahmad et al. both utilized

a C4.5 model (among others) to predict recurrent breast cancer [9, 36]. Singal et

al. utilized a random forest to predict the development of HCC in patients with

cirrhosis [147].

Kim et al. used an SVM model to predict recurrence for breast cancer patients [78].

Tseng et al. [159], Cirkovic et al. [36], Liang et al. [89], and Ahmad et al. [9] also used

SVMs to predict cancer recurrence.

Jerez-Aragonés et al. constructed neural networks to predict the recurrence of

breast cancer after surgery [68]. They constructed multiple models with different

network topologies based on different time intervals, with the theory that recurrence

risk is dependent on the amount of time after surgery, and not all features will have

the same weight at different follow-up times [68]. Tseng et al. used a modification of

an ANN, called extreme learning machine (ELM), that randomly assigns the input
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weights while modeling the output weights of the network [159]. This makes the ELM

model much faster to train than a typical ANN. Razavi et al. [123], Kim et al. [78],

Cirkovic et al. [36], and Ahmad et al. [9] also used an ANN to model disease risk.

The papers employing machine learning models tended to use decision tree, neural

network, or SVM models. Decision tree models, similar to regression models, are

easy to interpret, but they can lack in predictive performance. SVMs and ANNs are

difficult to interpret, but can achieve good classification results. Other models, such

as näıve Bayes and random forest, were only used once in the papers studied. While

algorithm choice can improve model performance, there can be a bottleneck related

to the quality of the input data and how it is structured. The following sub-sections

explore these ideas.

Feature Reduction

In most papers profiled, the authors have access to a dataset with a certain number of

attributes, and these attributes are examined in the context of the research problem.

In nearly every case, a domain expert, such as a physician or oncology researcher,

informed the analysts about features he or she believes will be important to the model.

The studies then only focus on these features, and perform a univariate analysis to find

which covariates have a statistically significant correlation with the output variable.

Then, only the significant features are used for training a model. Methods include

the Pearson correlation coefficient, mutual information, or distance correlation. This

generally results in less than 10 features input to the model, which is desirable to

allow interpretation of regression models.

Cirkovic et al. combined three different feature rankers from the Weka ML

toolkit [62] (mRMR, ReliefF, and Information Gain), to select the top 20 most rele-

vant features for use in their ML models. Razavi et al. applied canonical correlation

analysis (CCA) to reduce their feature set in the context of breast cancer recurrence
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prediction. CCA is a subset selection technique that finds the subset of features that

most correlate with an output set of features. In CCA, the output must be a set of

features, rather than a single variable, so the authors broke down the recurrence vari-

able into different types of recurrence (loco-regional recurrence or distant metastasis)

for the feature selection step. Once the most informative features were selected, they

included those features in a neural network to predict the binary outcome of recur-

rence. Liang et al. utilized two feature subset selection techniques, namely genetic

algorithm (GA) [178] and simulated annealing (SA) [7] to reduce the feature space

provided to their SVM model.

Several predictive models, such as decision trees, effectively perform feature selec-

tion as part of the model building process. The p-values from a statistical model can

also be used as a form of feature selection, by only selecting those features that have

significant p-values (often <0.05). Jerez-Aragonés et al. used a decision tree model

to first select important features, then built ANNs to predict recurrence of breast

cancer [68]. Tseng et al. [159], Radespiel-Tröger et al. [121], Cheng et al. [35], and

Singal et al. [147] built models with trees or forests, limiting the features used to those

in the resultant trees. Li et al. built a logistic regression model using features that

were found to be statistically significant from a Cox survival model [88]. In addition

to feature subset selection techniques alone, Liang et al. combined both the GA and

SA algorithms with random forest to create a hybrid model and subset-based feature

selection approach [89].

While manual feature reduction (i.e human experts) is useful for making models

more interpretable, it can negatively impact the performance of the model. Nearly

all studies reviewed used features that were deemed useful by a domain expert. A

machine learning model, however, can often pick up on hidden patterns in data that

humans cannot. Therefore, it can be advantageous to at least try building a model

with all available features, or use a feature selection algorithm to automatically reduce
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the feature set. Additionally, many studies only included covariates that were found to

be statistically significant through univariate analysis. This can also decrease model

performance, as a variable can still provide value to a model even if the p-value is not

significant. Liang et al. found that univariate analysis resulted in only one significant

variable, but their feature selection techniques selected four features to be included

in their predictive models [89]. The models that utilized feature selection had better

results than those that used the single significant variable.

Missing Data

Missing data is an important problem in all modeling efforts, especially in the health-

care domain. If certain patient data is missing, such as tumor information or treat-

ment history, the results can be significantly skewed. In addition to dropping patients,

some studies will merely ignore variables that are available because there is not enough

information filled in. El-Serag et al. chose to ignore lab results because they were

too sparsely recorded in the input data [49]. It is important that all clinical variables

are present, as to not bias the model, but it is also important to have a large sample

size to make the model more generalizable for future instances. While most studies

drop patients with missing clinical variables, there are several techniques that can

help keep as many patients as possible in the model. The benefit of using a Cox pro-

portional hazards model, as opposed to simpler survival models, is that Cox models

allow for censoring of patients that drop out of the study without experiencing the

event in question. This may be due to death not related to the cancer, or simply not

following up at the clinic.

Prospective databases and clinical registries can help produce the most integrous

data, as they can make certain fields mandatory for practitioners to populate as

they see patients. There is a trade-off however, if too many fields are required, the

participating investigators may simply not submit data as it takes away from their
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time seeing patients. Additionally, there is an overhead of regulation and management

in dealing with prospective studies, as compared to retrospective studies from EHR

systems that are used regularly in practice [82]. Cahlon et al. [29], Tseng et al. [159],

Singal et al. [147], and Bochner et al. [67] all used prospective databases or registries

and do not mention the problem of missing data. This does not mean they did not

encounter missing data, however, as they could have been filtered from their cohort

counts beforehand. Weiser et al. were able to fill in some missing tumor information

by having pathologists review the original slides [169].

Algorithmic techniques can be used to fill in missing values, such as mean imputa-

tion, or the expectation-maximization (EM) method. In mean imputation, a certain

variable with missing data is filled in by taking the mean of the other instance’s

values [47]. Bayati et al. utilize mean imputation to substitute values for missing

lab tests [24]. Naturally, this technique can only be used for continuous variables,

and may not be desirable as it may bias those instances that do not have the value

recorded by reducing the variance between values. EM is another method to impute

missing values, and involves iteratively maximizing the log-likelihood of certain pa-

rameter values [102]. Radespiel-Tröger et al. dropped patients with more than one

missing variable, but imputed values for one variable with EM as to not drop too

many patients [121]. Ahmad et al. dropped patients with certain missing values, but

used EM to impute other values [9].

5.2.4 Melanoma Risk Models

Several studies have built predictive models for melanoma risk. Most are case-control

studies that compare differences between patients with and without melanoma to

identify risk factors for the cancer [163], which is why they were excluded from the

formal review in Section 5.2.3. Bakos et al. studied 117 patients from a hospital and

outpatient clinic in Brazil [18]. Their model identified five risk factors for melanoma,
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with hair color having the most predictive value. Fears et al. administered detailed

questionnaires and skin exams to 1,663 patients in a case-control study of patients

from two dermatology clinics in the U.S. [52]. The most informative risk factors were

severe solar damage for men and number of moles for women.

Usher-Smith et al. conducted a review of the literature and found 25 studies that

built risk prediction models for melanoma [163]. They found that all models built

from these experiments fit along an ROC curve with an area of 0.755, meaning they

all had similar discriminatory power with the sensitivity and specificity influenced by

threshold selection. The various models assessed 144 different risk factors, and the

largest study included 1,663 patients from two clinics in Philadelphia and San Fran-

cisco [52]. Most studies determined these risk factors through patient questionnaires

or physical examinations. Additionally, only two studies used validation cohorts to

determine the applicability of the models to different populations [56, 173].

5.2.5 Section Summary

A literature search retrieved several reports of predictive models for cancer risk. We

identified several shortcomings:

• Availability of structured clinical data: Structured data points regarding patient

history and encounters are limited. Many data-capture systems record free-text

notes that are difficult to standardize across several patient charts. Data sharing

among healthcare providers is lacking, limiting holistic views of patient history.

• Old data: Most studies were published five or more years after the end of the

study period. This results in stale models that might not reflect the current

state of diagnosis and treatment.

• Advanced modeling methods : Researchers often only use one or two familiar

algorithms, possibly because of a lack of experience with various tools or limita-
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tions in computing power. Some studies applied feature selection methods, but

we were not able to find any studies that addressed the issue of class imbalance

in their clinical datasets.

5.3 CLINICAL RISK MODEL

Here, we present a cloud-based approach to learning from big data and demonstrate

its effectiveness on melanoma risk prediction from EHR system data [130, 133]. We

evaluate methods for practical cost savings while maintaining model accuracy by

using various types of computing infrastructures and data sampling techniques.

Among 4,061,172 patients who did not have melanoma through the 2016 calendar

year, 10,129 were diagnosed with melanoma within one year. A gradient-boosted clas-

sifier achieved the best predictive performance with cross-validation (AUC = 0.799,

sensitivity = 0.753, specificity = 0.688). Compared to a model built on the original

data, a dataset two orders of magnitude smaller could achieve statistically similar or

better performance with less than 1% of the training time and cost.

5.3.1 Materials and Methods

The models in this section were built to predict melanoma diagnosis within 12 months

of a given patient encounter. We included patients in the experiments if they had

no evidence of melanoma (defined as ICD9 V10.82, ICD9 172.*, ICD10 Z85.820,

ICD10 C43.*, ICD10 D03.*, melanoma SNOMED, biopsy result, or cancer log entry)

through 2016. We then tracked the patients through 2017 to determine if they received

a diagnosis of melanoma. This served as the binary class label for the prediction

problem: “melanoma” or “no melanoma.” The visit from which predictions were

made (the “index visit”) was selected based on the following criteria for positive and

negative cases. These constraints were inspired by Avati et al’s approach for a hospital

mortality prediction problem [16].
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• Positive cases : visit at least 6 months, and at most 12 months, before the

earliest melanoma diagnosis in 2017. The earliest visit meeting this criterion

was selected as the index visit.

• Negative cases : visit at least 12 months, and at most 24 months, before any

visit in 2017. The latest visit meeting this criterion was selected as the index

visit.

The goal of the constraints is to provide a consistent window of prediction time for

positive and negative cases. The 6-month lower-bound for positive cases was selected

to ensure the index visit was not a presentation for a melanoma biopsy or excision,

and is a large enough time window to enact a change in screening patterns for early

cancer detection. Furthermore, the lower bound of follow-up time for the negative

cases must be greater than the upper bound of follow-up time for the positive cases.

This is to ensure that the negative cases truly did not develop melanoma within a year.

Otherwise, they may have developed it at some point after the observation time. We

selected the 24-month upper-bound for negative cases to ensure that patients were

consistently following up with their dermatologist. Patients that did not have an

index visit matching these criteria were excluded from the study. We aggregated data

from visits and prescriptions through each patient’s index visit to use as independent

variables.

For each patient, we collected three types of data from the EHR system: Patient

Data, Visit Data, and Historical Visit Data. Patient Data refers to static patient data

that is not collected longitudinally, such as age, sex, race, melanoma family history,

geographic location (i.e., U.S. state), family history conditions, and drug allergies.

Visit Data represents the data recorded in the patient encounter of the index visit:

chief complaints, review of systems, vitals, skin exams, diagnoses, procedures, body

locations evaluated, prescriptions, biopsy results, and medical codes generated from

the visit. Historical Visit Data contains the same elements as the Visit Data category,
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but the features are aggregated across all visits prior to the index visit. As most data

elements are categorical in nature, we aggregated each by counting the number of

occurrences of each feature value across all visits. For the few numeric variables, we

calculated summary statistics of each feature across the visits (minimum, maximum,

mean, median, standard deviation). Table 5.1 describes each data element with a

description, number of categories for each feature, and percentages of missing data.

The missingness of each variable in a random sample of patients is given in Figure

5.3. Most Patient Data elements are required, and a visit generally contains complete

data about the exam, diagnosis, procedure, and related ICD and CPT codes. There is

more missing data for the Historical Visit Data, as not all patients had visits recorded

before their index visit.

84



Table 5.1: Data elements

Group Name Description %
Missing

# Cat-
egories

Matrix Value

Patient
Data

static year of birth Year the patient was born <0.1% - (integer)

static sex Birth sex (male, female, other) 0.00% 3 One-hot encoded categorical
static ethnic group Ethnic group (Hispanic or Latino, not Hispanic or

Latino, other)
0.00% 3 One-hot encoded categorical

race Race (African-American, Asian, White, other) 21.20% 4 One-hot encoded categorical
static state home U.S. state of home address (including D.C.) 0.50% 51 One-hot encoded categorical
static melanoma fh If patient has a family history of melanoma 3.20% - (0/1)
static allergy Drug allergen descriptions 67.00% 7,406 (integer) Number of times allergy was recorded across all

visits
static family history snomed Family history SNOMED codes 70.60% 418 (integer) Number of times family history condition was

recorded across all visits
Visit
Data

cpt Standard codes describing medical procedures for
billing purposes

7.80% 577 (integer) Number of units billed for each CPT code

icd9 Diagnostic codes used for disease classification and
billing (9th edition)

7.90% 896 (integer) Number of times each ICD9 code was referenced
in the bill

icd10 Diagnostic codes used for disease classification and
billing (10th edition)

7.90% 2,819 (integer) Number of times each ICD10 code was referenced
in the bill

snomed Standardized medical terminology covering terms be-
yond only procedures or diagnoses

38.90% 180 (0/1) If SNOMED code was associated with the visit

loinc Identifiers for laboratory orders 98.20% 1,953 (integer) Number of times each LOINC code was ordered
in the visit

cash charge Direct charges to the patient for non-medical pro-
cedures (categories represent a diagnosis/procedure
combination that was charged for)

96.00% 5,477 (float) Dollar amount of cash charges in the bill

vital Height, weight, temperature, blood pressure (sys-
tolic/diastolic), pulse, respiration

90.80% 7 (float) Numeric value of each measurement

ros Series of questions to identify symptoms the patient is
presenting with (ex. problems with healing, rash, hay
fever, sore throat)

79.40% 131 (0/1) If ROS question response was yes

chief complaint Reason why the patient is visiting the dermatologist
(ex. skin lesion, skin lesion follow up, rash, acne)

29.10% 405 (0/1) If each chief complaint was documented in the visit

follow up diagnosis Previous diagnosis the patient is following up on 64.90% 1,700 (0/1) If each diagnosis was documented as the follow-up
diagnosis for the visit

exam Body elements that the physician examined (ex. scalp,
head, chest, neck, back)

9.10% 95 (0/1) If each body element was examined

diagnosis Findings noted in the exam to associate procedures
with (ex. benign nevi, psoriasis, acne, melanoma, his-
tory of melanoma)

0.20% 2,048 (integer) Number of times each diagnosis was documented
in the visit

procedure Procedures and plans performed during the visit (ex.
liquid nitrogen, counseling, reassurance, biopsy)

0.50% 2,117 (integer) Number of times each procedure was documented
in the visit

bl zone Body locations associated with a finding and/or pro-
cedure (ex. head, face, trunk, scalp, leg)

6.40% 64 (integer) Number of times each body location was docu-
mented in the visit

biopsy result Result of a biopsy/excision performed in the visit (ex.
dysplastic nevus, basal cell carcinoma, melanoma)

87.40% 708 (integer) Number of times each result was received
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Group Name Description %
Missing

# Cat-
egories

Matrix Value

medication Medication name of a prescription written during the
visit

72.00% 1,107 (integer) Number of times each medication was prescribed
during the visit

ndc NDC code of a prescription written during the visit 72.00% 5,086 (integer) Number of times each NDC was prescribed dur-
ing the visit

Historical
Visit
Data

hist num visits Number of visits documented before the current visit 0.00% - (integer)

hist earliest visit diff days Number of days between earliest historical docu-
mented visit and current visit

0.00% - (integer)

hist latest visit diff days Number of days between latest historical visit docu-
mented and current visit

0.00% - (integer)

hist visit range days Number of days between earliest/latest historical visit 0.00% - (integer)
hist cpt Standard codes describing medical procedures for

billing purposes
23.20% 905 (integer) Number of times each CPT code was referenced

across all historical visits
hist icd9 Diagnostic codes used for disease classification and

billing (9th edition)
23.60% 1,445 (integer) Number of times each ICD9 code was referenced

across all historical visits
hist icd10 Diagnostic codes used for disease classification and

billing (10th edition)
26.80% 3,212 (integer) Number of times each ICD10 code was referenced

across all historical visits
hist snomed Standardized medical terminology covering terms be-

yond only procedures or diagnoses
44.10% 244 (integer) Number of times each SNOMED code was refer-

enced across all historical visits
hist loinc Identifiers for laboratory orders 94.70% 3,899 (integer) Number of times each LOINC code was ordered

across all historical visits
hist cash charge Direct charges to the patient for non-medical pro-

cedures (categories represent a diagnosis/procedure
combination that was charged for)

93.30% 6,602 (float) Dollar amount of cash charges in the bill across all
historical visits

hist vital Height, weight, temperature, blood pressure (sys-
tolic/diastolic), pulse, respiration

87.30% 49 (float) Min/max/mean/median/std of the numeric values
of each measurement across all historical visits

hist ros Series of questions to identify symptoms the patient is
presenting with

72.60% 129 (integer) Number of times each ROS question response
was yes across all historical visits

hist chief complaint Reason why the patient is visiting the dermatologist 22.30% 425 (integer) Number of times each chief complaint was docu-
mented across all historical visits

hist follow up diagnosis Previous diagnosis the patient is following up on 56.10% 1,826 (integer) Number of times each diagnosis was documented
as the follow-up diagnosis across all historical visits

hist exam Body elements that the physician examined 22.90% 104 (integer) Number of times each body element was exam-
ined across all historical visits

hist diagnosis Findings noted in the exam to associate procedures
with

21.60% 2,143 (integer) Number of times each diagnosis was documented
across all historical visits

hist procedure Procedures and plans performed during the visit 21.60% 2,206 (integer) Number of times each procedure was documented
across all historical visits

hist bl zone Body locations associated with a finding and/or pro-
cedure

23.30% 75 (integer) Number of times each body location was docu-
mented across all historical visits

hist biopsy result Result of a biopsy/excision performed in the visit 68.60% 797 (integer) Number of times each result was received across
all historical visits

hist medication Medication name of a prescription written during the
visit

52.80% 1,833 (integer) Number of times each medication was prescribed
across all history

hist ndc NDC code of a prescription written during the visit 54.30% 9,224 (integer) Number of times each NDC was prescribed across
all history
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Figure 5.3: Variable missingness for a random sample of patient records ordered by

most present variables.

The data extraction and matrix creation process is outlined in Figure 5.4. Given

that the Patient Data variables are not longitudinal, these data were extracted sepa-

rately from longitudinal data such as patient encounters (or visits) and prescriptions.

The longitudinal data were aggregated for each patient by using count vectors of the

data elements. For example, if a patient had four visits with a CPT code of 99201,

the entry for “CPT 99201” in their vector would be “4.” Because there are more

than 100,000 discrete data points, most entries in the aggregated patient data were

zero, resulting in a collection of sparse vectors. The count vectors also account for

missing data: if a patient did not have a record of a particular feature value, the count

resulted in zero. We performed mean imputation for the small number of patients

that did not have a recorded year of birth. The “# Categories” column in Table 5.1

shows the number of new features that were added by creating count vectors of the

source features, and the “Matrix Value” column corresponds to the actual number

that is stored in the matrix for the patient/feature entry.

5Icons made by smalllikeart on www.flaticon.com.
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Figure 5.4: Sparse matrix creation process. First, longitudinal data are aggregated

to create one vector for each patient. Then, vectors are collected into a sparse matrix

using an index map to relate vector indexes to clinical variables. Note: Values in this

figure are fictional and do not represent actual patients in the dataset.5
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Model Training and Evaluation

We built logistic regression, random forest, and XGBoost models to evaluate perfor-

mance across the original and sampled datasets. Model hyperparameters were selected

based on a grid search; LR: L1 penalty (LASSO), regularization parameter C = 0.5,

RF: 500 trees, no maximum depth, XGB: learning rate 0.1, 500 trees, maximum

depth 3. Given that LR models can be affected by high dimensionality, we selected

the top 1,000 features ranked according to the χ2 statistic. We did not perform any

feature selection for the RF or XGB models, because these models inherently select

features. To evaluate model performance on smaller datasets and given the high class

imbalance present in the training dataset, we used RUS to create multiple sampled

datasets. We evaluated models on the original dataset along with sampled datasets

according to the following target positive class ratios: 0.01, 0.1, 0.25, and 0.5.

We trained and evaluated all models using five-fold cross-validation repeated five

times. An example model pipeline is provided in Figure 5.5. We performed data

sampling and feature preprocessing separately in each training fold rather than for

the whole dataset beforehand. This resulted in 25 runs that can be used for statistical

tests. The dataset with the highest AUC for each classifier was selected for further

examination with the following metrics: sensitivity (recall), specificity, precision, and

AUPRC.

Because all experiments were conducted using Amazon EC2, we were able to di-

rectly calculate the cost of training each model configuration. Running time is not

the best comparison across different classifiers, because the same model configuration

can be run on more advanced hardware that would speed up running time. In ad-

dition, using an instance with more CPUs would only benefit models that support

multithreading. Therefore, we estimated the cost of training a model as follows:

Train cost =
Train time

3600
∗ Hourly price (5.1)
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Figure 5.5: Example ML pipeline. Within each cross-validation run, the data are

sampled and processed. Then, the results from each run are collected together.

Table 5.2: EC2 instance types

Instance Type CPUs Memory (GB) Hourly Price ($) Models

r4.2xlarge 8 61 0.532 LR

c4.8xlarge 36 60 1.591 RF, XGB

Where train time is the average time (in seconds) spent training a single model

(i.e., one training fold in cross validation) and hourly price is the Amazon EC2 hourly

cost. The instance types used along with resource specifications are outlined in Table

5.2 (instance and cost data as of June 27, 2018). Amazon offers discounted rates

by using Spot instances, but those prices are not constant over time, so we used the

on-demand hourly rate for comparisons.
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Table 5.3: Patient population

Variable Value
No Melanoma

(n, %)

Melanoma

(n, %)
p

Total Patients 4,051,043 (99.75) 10,129 (0.25)

Age (years) (mean ± SD) 57.00 ± 19.88 68.31 ± 12.59 <0.001

Sex Female 2,403,446 (59.33) 4,025 (39.74) <0.001

Race/Ethnicity African-American 59,367 (1.47) - <0.001

Asian 32,714 (0.81) -

Hispanic 108,989 (2.69) 135 (1.33)

White 2,818,378 (69.57) 7,623 (75.26)

Other 1,031,595 (25.46) 2,362 (23.32)

Geographic Region Midwest 743,581 (18.36) 1,496 (14.77) <0.001

Northeast 778,382 (19.21) 1,621 (16)

South 1,700,964 (41.99) 4,686 (46.26)

West 802,258 (19.8) 2,269 (22.4)

Other 25,858 (0.64) 57 (0.56)

Family History 484,882 (11.97) 1,387 (13.69) <0.001

of Melanoma

History

(Number of Visits) 1

Mean; Median

(Q1-Q3)
3.95; 2 (1-5) 5.02; 3 (1-7) <0.001

History

(Days) 2

Mean; Median

(Q1-Q3)
484.13; 371 (31-798) 557.72; 454 (40-932) <0.001

1 Number of visits recorded prior to index visit.

2 Days between earliest visit recorded and index visit.

5.3.2 Results

Population

There were a total of 4,061,172 patients, 10,129 of whom were diagnosed with melanoma

within one year (Table 5.3). Compared to the no melanoma class, the melanoma class

had a lower proportion of females (59.33% vs. 39.74%), and higher proportions of

white race (69.57% vs. 75.26%) and family history of melanoma (11.97% vs. 13.69%).
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Table 5.4: Average results for each dataset and classifier

Dataset
Total

(N)

Negative

(N)

Positive

(%)
Average AUC Average Training Cost ($)

LR RF XGB LR RF XGB

4m 4,061,172 4,051,043 0.25 0.7617 0.6949 0.7988 1.1466 2.6703 0.9648

1m 1,012,900 1,002,771 1 0.7651 0.7415 0.7991 0.1373 0.5312 0.1347

100k 101,290 91,161 10 0.771 0.7682 0.7989 0.0152 0.0244 0.0168

40k 40,516 30,387 25 0.7713 0.7734 0.7971 0.006 0.0111 0.0099

20k 20,258 10,129 50 0.7674 0.7736 0.7921 0.0038 0.0072 0.0068

Table 5.5: Additional metrics

Classifier Best Size AUC AUPRC Sensitivity (Recall) Specificity Precision

LR 40k 0.7713 0.01 0.6961 0.7045 0.0059

RF 20k 0.7736 0.0095 0.7032 0.6952 0.0057

XGB 1m 0.7991 0.0136 0.7529 0.6877 0.006

Performance

Table 5.4 outlines the sizes of the original dataset and each sampled dataset as well

as the average performance for the three classifiers; these results and error bars for

the minimum/maximum values across all runs are plotted in Figure 5.6. The greatest

AUC (0.7991) was achieved by the XGB model on the 1m dataset, but this was not

significantly better than that on the original 4m dataset (0.7988, p = 0.846). Train-

ing the XGB model with the 40k dataset achieved statistically comparable results to

the full dataset (0.7971, p = 0.1797). The AUCs for the LR and XGB models were

relatively unaffected by the reduction in dataset size, while the performance of the

RF model actually improved when sampling was introduced. The best RF model had

an AUC of 0.7736 on the 20k dataset compared to the baseline of 0.6949 (p < 0.001).

Additional performance metrics for each best performing model are provided in Ta-

ble 5.5. XGB had the highest AUPRC (0.0136), sensitivity (0.7529), and precision

(0.0060), while LR had a slightly higher specificity (0.7045).

The RF model was the most expensive of the three classifiers, costing an average
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Figure 5.6: Average results for each classifier and dataset

of $2.6703 for a single model fit using the full 4m dataset. For a run of 5-fold cross-

validation with 5 repeats, this would cost over $66. Meanwhile, the XGB model cost

$0.9648 per model fit, and the LR model cost $1.1466 per model fit on the same

dataset. When run on smaller datasets, all models were significantly cheaper than

the respective baselines, with datasets smaller than 1m costing <$0.1000 per model

fit. The LR model had the cheapest cost with $0.0038 for the 20k dataset, while the

RF and XGB models were $0.0072 and $0.0068 for the smallest dataset, respectively.

5.3.3 Discussion

The results of this section offer several perspectives on the intersection of risk models,

EHR systems, and big data. Datasets for specific biomedical and health applications

can be small because of limited data sharing between institutions, strict inclusion

criteria, and a lack of structured clinical data. Risk models are often built with data

collected from individual healthcare or academic institutions. While large centers

can attract patients from different geographical areas, the treatment and data col-
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lection processes are still localized to the center and might not pair well with data

from elsewhere. Furthermore, institutions generally do not share data, resulting in

many different models being built from fragmented datasets. The dataset used in

the present study is unique in that it provides over 100,000 structured data points

from over 4 million dermatology patients throughout the U.S. Though the dataset

is unique, the model can still have wide applicability due to the number of patients

treated by physicians using the EHR system. Distributed computing is often required

to deal with big data. While packages such as MLlib [100] provide distributed ways

to train machine learning algorithms, there are many more libraries and algorithms

available on non-distributed infrastructures (i.e., single machines). We found that the

best approach for our scenario was to use Spark to perform data collection and trans-

formation and then save the data into a sparse format to use with single machines.

By doing so, we were able to use multiple machines to train and evaluate multiple

machine learning models in parallel rather than using a cluster of machines to train

one model at a time. For other datasets that are large, high-dimensional, and dense,

cluster computing may still be required for model training.

Although the machine learning community often assumes that more data means

better models [164], we hypothesize that this might not be true in cases with truly

massive amounts of data. Here, we found that using datasets with tens of thousands

of instances could achieve statistically similar (i.e., XGB models) or better (i.e., RF

models) performance than when using the full dataset (n = 4, 061, 172). This is likely

because of a high level of homogeneity among instances in the negative class, which

means that less instances need to be used to produce a generalizable model. We will

explore this hypothesis in Chapter 6. The RF performance increase using less data

may be explained by tree overfitting in the forest. The datasets with less data had

shallower trees, resulting in more generalizability when evaluating test data. Using

fewer instances means that less sophisticated computing infrastructure can be used,
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which allows researchers to continue to use known methods and tools rather than

worrying about how to handle big data in their machine learning workloads.

Limitations of this dataset include selection bias and data quality. Because all

patients in this study have already visited a dermatologist, we might be missing key

patients who do not regularly visit a dermatologist. Increased interoperability and

data sharing between institutions can help reduce this limitation, which is a key goal

of the 21st Century Cures Act [6]. There is, however, clinical utility of this model

on a dermatology population. We evaluated the chief complaint of the earliest visit

for each patient in the dataset and found that 1,090,042 (26.91%) patients in the

no melanoma class had a chief complaint for other conditions, such as acne, verruca

vulgaris, or a rash. Even in the melanoma class, 1,167 (11.52%) of patients did

not initially present for a skin check. These patients are ideal candidates for our

model, as they may be high-risk for melanoma and not know it. While EHR systems

provide a structured data input solution, variable input might differ substantially

among providers, limiting the depth of data available. Accordingly, the size of the

current dataset helps to alleviate concerns regarding consistency and missing data.

While many factors selected by these models indicate patients that may be already

presenting for skin checks, the model can still provide value as the predictions are

personalized for each patient.

5.3.4 Section Summary

We described a case study of learning from big data to produce an effective melanoma

risk prediction model based on data collected from a large representative dermatol-

ogy EHR system covering millions of patients across the U.S. Our study provides a

reference framework for machine learning studies using large, high-dimensional, and

imbalanced EHR data. We used a distributed processing infrastructure for collecting

and formatting the data as well as a non-distributed infrastructure for machine learn-
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ing. Then, we achieved statistically similar or better performance using a sampled

dataset versus the original data, saving hundreds of dollars in cloud computing costs

for model experimentation.

5.4 ADVANCED MACHINE LEARNING TECHNIQUES

In this section, we build upon the modeling problem presented in Section 5.3 by

experimentally evaluating various advanced machine learning techniques to address

the problems of dataset size, sparseness, and imbalance [129]. We explore the use

of logistic regression, decision tree, and random forest classifiers with various feature

selection and random undersampling techniques.

5.4.1 Methods

We utilize the same dataset and matrix preprocessing methods described in Section

5.3.1 with a slightly modified class labeling and inclusion process. To maximize the

number of instances available for machine learning, we relaxed the criteria for the

index visit and follow up times as described below.

Patients were included in this study if they had: (1) at least one dermatologist

visit in 2016, and (2) had no history of melanoma through 2016. Available visits

from January 2011 through December 2016 were used to predict whether or not a

patient developed melanoma in the 2017 calendar year. Data from each patient’s last

visit in 2016 were extracted to use as instances for the predictive model (index visit).

The patients were then tracked through 2017 to determine if they were diagnosed

with a new melanoma. Patients that did not develop melanoma in 2017 were labeled

“no melanoma”, while those that did were labeled “new melanoma”. Therefore, we

predict the development of melanoma within 1-24 months of the index visit.

The goal of this study is to determine what modeling techniques are most beneficial

for learning from sparse, imbalanced clinical data. Therefore, we built a large number
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of models with different configurations and machine learning techniques to assess the

performance of each technique. We used LR, DT, and RF for the classifiers.

The dataset was randomly split into a train and test set, with 30% of the instances

from each class in the test set. Models and parameters were selected using stratified

5-fold cross-validation on the train set based on AUC, with the same pipeline as

described in Section 5.3.1 (Figure 5.5). We also calculated balanced accuracy, TPR,

and TNR for each model configuration. We applied RUS and then feature selection

within each fold of cross-validation. We tested various sampling ratios for RUS: 1:99,

10:90, 35:65, and 50:50. We selected the top K features as ranked by χ2 to feed to the

classifier. Tested values of K were: 10, 100, 1,000, and 10,000. We were limited in

feature ranker choices due to the sparse format of the data; scikit-learn only supports

χ2 and mututal information rankers6, and we found the mutual information ranker

was too computationally intensive for our dataset.

In addition to model selection, the cross-validation results were used to select the

decision threshold for each model. The default threshold is 0.5, but it is advantageous

to explore the distribution of predicted probabilities of each model to select a threshold

that will result in better TPR and TNR. We did this experimentally by plotting the

predicted probabilities of instances versus their actual class membership, and then

explored the TPR and TNR of various thresholds. We chose a threshold where the

TPR is maximized without a large drop in TNR. The goal of the model is to flag

patients that are at high risk for developing melanoma; however, too many false

positives would make it intractable to screen all patients. Therefore, a balance must

be achieved between the two metrics.

High-level dataset statistics for the full dataset as well as the train set are provided

in Table 5.6.

6http://scikit-learn.org/stable/modules/feature selection.html
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Table 5.6: Dataset statistics

Full Train

Number of instances 9,531,408 6,671,985

Number of features 117,516 117,516

Number of data elements 1.12 × 1012 7.84 × 1011

Sparsity of matrix* 7.94 × 10−4 7.94 × 10−4

Number of positive cases (new melanoma) 17,246 12,059

Class distribution 0.181% 0.181%

* Number of non-zero elements divided by the total number of elements

5.4.2 Results

Population

Table 5.7 describes the patient population that met the inclusion criteria. Out of

9,531,408 patients that did not have a history of melanoma in 2016, 17,246 (0.18%)

of them developed melanoma in 2017. The average number of historical visits was 3.4

and 1.9 for patients with a new melanoma and no melanoma, respectively. For many

patients (36.34% of new melanoma patients, and 53.6% of no melanoma patients),

the visit in 2016 was their first dermatology visit recorded in the EHR, which means

no data from historical visits was available. Figure 5.7 outlines the number of visits

recorded and time range (from first visit to last visit) for patients with historical visits.

Additionally, 4,970,348 (52.1%) patients did not have any follow up visits in 2017 (i.e.

lost to follow up). This is considered a form of censorship for this experiment and

the patients are included in the “no melanoma” group.

Performance

Figure 5.8 shows the AUC values from the cross-validation results of each model

configuration on the train set. These results show that RUS and feature selection

sizes have an impact on model performance across all three classifiers. To select the

best performing models, we performed various ANOVA and HSD tests. The ANOVA
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Table 5.7: Demographics and clinical characteristics

No Melanoma New Melanoma

Variable Value n (%) n (%)

Total Patients 9,514,162 (99.82%) 17,246 (0.18%)

Age (years) (mean ± SD) 51.50 ± 21.76 67.40 ± 12.87

Sex Female 5,684,788 (59.75%) 7,138 (41.39%)

Male 3,822,755 (40.18%) 10,099 (58.56%)

Other 6,619 (0.07%) 9 (0.05%)

Race
African

American
230,877 (2.43%) 8 (0.05%)

Asian 130,123 (1.37%) 9 (0.05%)

Hispanic 367,633 (3.86%) 246 (1.43%)

White 5,874,443 (61.74%) 12,781 (74.11%)

Other 2,911,086 (30.60%) 4,202 (24.37%)

Home Region Midwest 1,731,205 (18.20%) 2,570 (14.90%)

Northeast 1,814,746 (19.07%) 2,919 (16.93%)

South 3,958,926 (41.61%) 7,857 (45.56%)

West 1,918,661 (20.17%) 3,806 (22.07%)

Other 90,624 (0.95%) 94 (0.55%)

Family History

of Melanoma
997,013 (10.48%) 2,418 (14.02%)

New Patient 5,109,613 (53.60%) 6,267 (36.34%)

Figure 5.7: Distributions of the number of historical visits recorded and time range

between the first and last visit, with respect to the class label. Note: this is only for

patients with historical visits; those with only one visit are not represented.
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Figure 5.8: AUC of each model configuration

Table 5.8: ANOVA: All models

Source DF SS MS F value Pr(>F)

Model 2 0.371 0.185 205.233 0

RUS 4 0.890 0.223 246.458 0

FS 4 2.034 0.508 563.135 0

Model:RUS 8 0.555 0.069 76.787 0

Model:FS 8 0.303 0.038 41.991 0

RUS:FS 16 0.142 0.009 9.856 0

Model:RUS:FS 32 0.237 0.007 8.205 0

Residuals 300 0.271 0.001

tests shows that all factors and interactions are significant, most likely due to the

sheer number of samples in the dataset. The ANOVA results for all models are in

Table 5.8, and while we performed individual tests for each classifier, we only present

the RF-specific results for brevity (Tables 5.9-5.10).

To select the best feature selection size and sampling ratio, we examined the results

of HSD tests of the interaction between sampling ratio and feature selection size for

each model. We first selected the feature selection size for each model, maximizing

the number of features for the RF model, and minimizing the number of features for

Table 5.9: ANOVA: RF

Source DF SS MS F value Pr(>F)

RUS 4 0.400 0.100 1348.701 0

FS 4 0.831 0.208 2804.633 0

RUS:FS 16 0.018 0.001 14.856 0

Residuals 100 0.007 0.000
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Table 5.10: HSD: RF

RUS:FS Group AUC SD

RUS 35%:1000 A 0.788 0.004

RUS 35%:All A 0.788 0.004

RUS 35%:10000 A 0.787 0.004

RUS 50%:10000 A 0.786 0.005

RUS 50%:All A 0.786 0.004

RUS 50%:1000 A 0.786 0.004

RUS 10%:1000 A 0.782 0.004

RUS 10%:All A 0.779 0.003

RUS 10%:10000 A 0.779 0.003

RUS 1%:1000 B 0.737 0.004

RUS 1%:All B 0.730 0.005

RUS 35%:100 B 0.728 0.006

RUS 1%:10000 B 0.727 0.004

RUS 50%:100 B 0.724 0.004

RUS 10%:100 B 0.724 0.003

RUS 1%:100 C 0.701 0.004

No Sampling:1000 D 0.638 0.005

No Sampling:10000 DE 0.626 0.005

No Sampling:All DE 0.621 0.004

No Sampling:100 E 0.609 0.005

RUS 35%:10 F 0.588 0.020

RUS 50%:10 F 0.587 0.018

RUS 10%:10 G 0.564 0.024

RUS 1%:10 H 0.479 0.013

No Sampling:10 I 0.443 0.004
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Figure 5.9: ROC curves for each classifier

the LR and DT models. The ensemble nature of the RF model benefits from large

variability in instances and features, so it is advantageous to include as much data as

possible. Conversely, the LR and DT models should have as few features as possible,

so they do not overfit to features that are not generalizable to a larger population.

Additionally, a small number of features is desired for global interpretability of these

models. Then, we chose the sampling ratio that resulted in the highest AUC for each

model. Figure 5.9 shows the ROC curve for these models.

Figure 5.10 plots the predicted probabilities of the instances versus their actual

class membership for each of the selected models. Instances with a probability above

the selected threshold (red dotted line) are classified as positive, while all probabilities

below the line are classified as negative. Therefore, a good model will have a dense

group of positive instances above the red line, and a dense group of negative instances

below the red line. The RF model has the best spread of probabilities, indicating

that the model has the most generalizability across various thresholds. If the default

threshold of 0.5 was used for the DT and LR models, the models would have a very

low TPR and be useless for clinical practice.

Table 5.11 shows the classification results for the selected models on the test set,
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Figure 5.10: Density curves of the predicted probabilities versus actual classes for each

selected model. The dotted lines represent the selected threshold for each model.

Table 5.11: Classification results

Model TPR TNR
Balanced

Accuracy
AUC

RF 0.708 0.718 0.713 0.790

DT 0.869 0.493 0.681 0.749

LR 0.766 0.648 0.708 0.772

using the top 1,000 features for LR and DT, and RUS 35:65 for all classifiers. The

RF model outperformed the other models across most metrics with an AUC of 0.790,

TPR of 0.708, and TNR of 0.718. The DT and LR model have higher TPR but lower

TNR than the RF model.

Figure 5.11 presents ROC curves for the RF model, broken down by patients that

do and do not have historical visits. It is interesting to note that the AUC for new

patients is higher than that for established patients, but the other metrics are slightly

different as shown in Table 5.12. The model has a high TPR (0.799) and low TNR

(0.570) for established patients but a high TPR (0.845) and low TNR (0.544) for new
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Figure 5.11: ROC curves for each selected model

Table 5.12: New vs. established patient results

Sensitivity Specificity
Balanced

Accuracy
AUC

All 0.708 0.718 0.713 0.790

Established 0.799 0.570 0.684 0.753

New 0.544 0.845 0.695 0.807

patients. This shows that having data from multiple patient visits is beneficial for

detecting patients with a high risk of melanoma.

5.4.3 Section Summary

In this section, we explored various machine learning techniques to build risk pre-

diction models for melanoma from structured EHR data. We utilized sparse storage

techniques and random undersampling to handle the large size and imbalance of the

data. We found that the top 1,000 features with χ2 significantly improved perfor-

mance for LR and DT. Overall, RF achieved the best classification performance with

a 35:65 class ratio and no prior feature selection.
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5.5 INTERPRETABILITY

For a model to be effectively incorporated into clinical practice, the physician and pa-

tient should have insight into how the model is making predictions (see Section 2.1.4).

Global and local interpretability considerations for the models created in Sections 5.3-

5.4 are provided below. In addition to ML and usability considerations, we examine

the features selected to evaluate the clinical accuracy of the models produced.

5.5.1 Global Interpretability

The most important features in the LR model from Section 5.3 are provided in Ta-

bles 5.13-5.14. We found that models trained with patients that had historical visits

(“history”) versus those that did not (“no history”) achieved similar predictive perfor-

mance (AUC = 0.7597 vs. 0.7586) but utilized different features for each population.

Therefore, we explore selected features separately for these populations. As we are

not able to present all 1,000 features due to space constraints, we display the top ten

features with positive weights and top ten features with negative weights. The highest

predictors for melanoma risk are the presence of other cancerous and precancerous

lesions such as basal cell carcinoma or actinic keratoses, neoplasms of uncertain be-

havior, and history of a malignant lesion, or treatments for these conditions (Mohs

surgery, excision). Negative predictors of melanoma risk are related to lower-risk

populations (African American, Hispanic, Female), and dermatology diagnoses that

may be an indicator of young age (acne). For patients with history, we note that

the model selects several variables covering historical visits (hist *). Age, race, and

presence of other lesions are fairly known general risk factors for the cancer, so we can

confirm that the EHR dataset is capturing relevant clinical information for melanoma

risk prediction.

Using 1,000 features in a linear model is still too many; it is difficult for a person to

grasp contributions from more than 5 or 10 features at a time. We present the weights

105



Table 5.13: LR model weights: No history

Highest weights Lowest weights

Feature β Feature β

icd10 D48.5 3.968976 chief complaint Pimples (Acne) -1.168288

icd9 173.31 1.666087 exam chest -0.97172

procedure ShaveBiopsy 1.659514 icd9 V65.49 -0.930093

icd10 L57.0 1.407742 diagnosis Acne -0.870827

diagnosis Basal Cell Carcinoma 1.374019 procedure NCounselingAcne -0.745976

procedure mipsQuality 0.792211 static ethnic group HISPANIC OR LATINO -0.568793

biopsy result Basal Cell Carcinoma 0.642071 static sex FEMALE -0.487668

procedure PunchBiopsy 0.482086 static race african american -0.45097

icd10 Z08 0.479657 procedure Prescription -0.273696

cpt 11100 0.410025 diagnosis Milia -0.244045

Intercept: -0.972721

Table 5.14: LR model weights: History

Highest weights Lowest weights

Feature β Feature β

procedure Mohs 2.637419 procedure SutureRemoval -1.542473

icd10 D48.5 2.58132 follow up diagnosis Acne -1.464221

hist icd10 L57.0 2.307007 icd9 V65.49 -1.247825

procedure ShaveBiopsy 1.589884 static race african american -1.156283

diagnosis Basal Cell Carcinoma 1.52941 diagnosis Acne -1.020633

hist icd10 D48.5 1.517638 hist visit range days -0.925938

procedure Defer 1.452915 icd9 706.1 -0.654565

procedure ExcisionMalignant 1.443212 icd10 Z71.89 -0.54742

hist icd10 Z87.2 1.37611 procedure TreatmentRegimen -0.497152

cpt 17004 1.255758 static sex FEMALE -0.476317

Intercept: -1.647285
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Table 5.15: LR model weights: 10 features

Feature Weight

Intercept -0.849657489

Days between earliest visit and current visit 0.000339452

Days between latest previous visit and current visit -0.00028521

Days between earliest visit and latest previous visit 0.000624662

History - sum of weight -0.007420045

History - min systolic blood pressure 0.000363017

History - sum of systolic blood pressure 0.004628308

History - average diastolic blood pressure -0.000295815

History - count of diastolic blood pressure 0.001046788

History - median height -0.0000952

History - std of weight -0.0000423

for an LR model from Section 5.4 using just 10 features in Table 5.15. Note that this

model has much lower performance than the other models (AUC = 0.616), and we do

not recommend using this model for clinical decisions. Based on the features included

in the model, it is most likely overfit to numeric features in the training folds. Global

interpretability of decision trees suffer from the same problem as logistic regression,

in that it is difficult to grasp the full nature of the model when there are a large

number of features. Figure 5.12 shows a small subset of the tree for the selected DT

model.

Since a random forest model contains an ensemble of decision trees, it is not

possible to directly explain the model from a global perspective (such as with a LR

or DT). Feature importances, however, can be ascertained from the fitted model.

The feature importance in a random forest model is a measure of how much impact

the particular feature has on a prediction made from the model. All importances

are positive as they do not explain the directional impact of the feature, just its

importance relative to the other features. The sum of all importances add up to 1.

Figure 5.13 shows the cumulative importance as the number of features is increased

to 5,000, and Table 5.16 shows the top 15 features selected by the model produced in
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Figure 5.12: Sample nodes from the decision tree (some paths removed for display

purposes). The left child node is traversed if the condition in the root node is met.

The first number in the value array is the proportion of positive instances (new

melanoma) in the training set.

Section 5.4.

5.5.2 Local Interpretability

Our goal is to build a risk model for personalized patient care; therefore, we examine

more individualized feature importance using the RF and XGB models. Local inter-

pretability is available from random forest models by exploring the path traversed

Figure 5.13: Cumulative feature importances for the RF model

108



Table 5.16: RF: Top 15 feature importances

Description Importance

Patient year of birth 0.019057044

ICD9 702.0 (Actinic keratosis) 0.009366818

ICD10 L57.0 (Actinic keratosis) 0.008573076

Body location - trunk 0.006139061

Body location - face 0.005888611

Procedure - Liquid Nitrogen 0.005863717

CPT 17003 (Destruction premalignant lesion 2-14) 0.005844474

CPT 17000 (Destruction premalignant lesion 1st) 0.005828385

Historical ICD10 L57.0 (Actinic keratosis) 0.005595849

ICD10 D48.5 (Neoplasm of uncertain behavior of skin) 0.005068944

Procedure - Biopsy 0.005005304

Historical ICD9 (702.0) - Actinic keratosis 0.004913928

ICD9 238.2 (Neoplasm of uncertain behavior of skin) 0.004897940

Body location - arm 0.004733738

Sex - female 0.004539907

by each particular instance. This allows patients and providers to see why a specific

prediction was made. The bias and contributions of each feature are added to make

the prediction, as in a regression function. The bias for the RF model from Section

5.4 is 0.35, and example feature contributions for a positive and negative instance are

provided in Tables 5.17 and 5.18. The “Prediction” column indicates the prediction

given by only using the features up to the current row. Both examples displayed are

represented by over 10 instances each in the test dataset. In both cases, over 2,000

features are required to determine the final prediction of the instance. This illustrates

that the depth of the EHR data is crucial to making accurate predictions, and there

are indeed a large number of factors that contribute to a patient’s risk of developing

melanoma.

A summary plot of the top twenty features in the XGB model from Section 5.3

according to their mean SHAP values is provided in Figure 5.14. Each dot represents

the impact of the particular feature for a given instance and is colored according
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Table 5.17: Example prediction: Positive class

Rank Feature Value Contribution Prediction

1 Diagnosis - Squamous Cell Carcinoma 1 0.064 0.414

2 CPT 17262 - Destruction malignant lesion trunk/arm/leg 1.1-2.0cm 1 0.038 0.452

3 ICD9 702.0 - Actinic keratosis 1 0.035 0.488

4 CPT 17000 - Destruction premalignant lesion 1st 1 0.034 0.522

5 Procedure - Liquid Nitrogen 1 0.033 0.555

Predicted value: 0.45. Number of features to achieve value: 2,562.

Table 5.18: Example prediction: Negative class

Rank Feature Value Contribution Prediction

1 Patient year of birth 1982 -0.030 0.320

2 Procedure - Treatment Regimen 1 -0.010 0.310

3 ICD9 702.0 - Actinic keratosis 0 -0.010 0.301

4 Chief complaint - Warts 1 -0.010 0.291

5 CPT 99202 - Office outpatient new 20 minutes 1 -0.010 0.282

Predicted value: 0.015. Number of features to achieve value: 3,211.

to what magnitude of value contributes to the model impact. For example, a high

feature value of “static sex MALE” has a positive impact on model output, meaning

male sex is a factor that increases melanoma risk for those instances. As with LR, we

found that the features selected by a model on the “no history” (AUC = 0.8173) versus

“history” (AUC = 0.7934) populations were different. The features selected in the

XGB model have some substantial differences from the LR model. Particularly, year

of birth (age) is the most important predictor, followed by actinic keratoses (L57.0),

neoplasm of uncertain behavior (D48.5), and sex. Other risk factors not present in

the LR model are melanoma family history, evaluations of various body locations

(trunk, leg, chest, hands) and geographic location (home address in Florida). The

plot provides an estimate of both individualized and global feature importance by

plotting the SHAP values for a random sample of instances. Older age (lower year of

birth) has the largest positive impact on risk for both populations, as well as different
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magnitudes of negative risk decreasing as age decreases. The time between the index

visit and the patient’s most recent visit (“hist latest visit diff days”) was the second

most important factor for the history population, and seems to have an increasing

impact on risk as the time increases. The top features for the history model are

almost exclusively from historical visit data rather than the index visit. This shows

that history is indeed important for building estimating risk, but other factors can

also be used from the index visit if history is not available. These observations show

that a simple global model does not necessarily provide the best estimate of melanoma

risk.

Age has an impact across the largest group of patients, but the other features

appear to have effects only for localized groups, meaning that a large number of

features must be included to produce the most effective model. To evaluate this

hypothesis, we trained an XGB model on the 1m dataset with an increasing number

of the most important features according to their SHAP values (Figure 5.15). We

see that 300 features are required to achieve the best performing model, meaning

that hundreds of different factors from the patient’s history can affect their risk of

the disease. Deployment into the structured EHR system is ideal for this type of

model, as a patient’s risk can be evaluated in real-time rather using an external risk

evaluation tool to manually input data.

5.5.3 Section Summary

In this section, we presented various interpretability considerations of the classifiers

produced in this chapter. Different models may be chosen based on the clinical sce-

nario. For researchers looking to identify general risk factors for melanoma, globally

interpretable models with a small number of features are desired. In a clinical risk

prediction context, however, a locally interpretable model with the best performance

is desired. As shown in our results, there are tradeoffs between these two scenarios.
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Figure 5.14: XGB SHAP values from a random sample of instances
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Figure 5.15: Model performance as more features are included in the XGB model

using the 1m dataset. The top features are ranked according to the mean SHAP

values from a trained model using all features.

A globally interpretable model, as shown with LR, tends to have worse performance

than a model using more features, and the best performing ensemble models have

limited global interpretability. SHAP values with these ensembles, however, are a

promising new avenue for model interpretation and can be a great benefit when de-

ploying prediction models into a clinical setting.

5.6 CHAPTER SUMMARY

This chapter opened with an introduction to cancer risk prediction models, followed by

a review of previous literature building risk models for cancer, and then specifically

for melanoma. We then described our two experiments that built risk models for

melanoma using MAMEL data.

The structured-data EHR and cloud-based model training process described herein

addressed the shortcomings identified in previous cancer risk modeling studies. Avail-

ability of structured clinical data: the structured, cloud-based EHR system provided
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consistently collected data points across millions of patients at different practices. Old

data: the data consistency allowed for rapid querying, de-identification and transfor-

mation of data to use for training machine learning models. The time between the

end of the study period (December 2017) and experiment completions for both stud-

ies was less than one year. Advanced modeling methods : we conducted comprehensive

studies of advanced classifiers such as XGBoost, as well as feature selection and data

sampling methods. Risk factors were evaluated using LR weights and decision tree

paths, and local interpretability was explored using tree traversal for RF and SHAP

values for XGB. We showed that simple global models do not produce the results

for clinical decision support, and a large number of features (>300) was required to

produce the best model.

To the best of our knowledge, this work is the first to evaluate the impact of both

data sampling techniques and feature selection for a melanoma risk prediction model.

Additionally, we explored cost considerations when building models in the cloud, as

well as interpretability of the various models. The average number of instances used

in the reviewed works is 359,120, with the largest containing 2,975,369 [179]. Our

largest dataset contains 9,531,408 instances (Section 5.4.1).

While models have been built from EHR data to predict risk for other cancers [60],

none have been built for melanoma. To the best of our knowledge, this is the first

study to automatically use raw features from an EHR system to build a melanoma risk

prediction model, and certainly is the first to build a model using data from millions

of real-world patient records. Only one study used more than 300 features [24] while

most utilized less than 100. The raw features used in our experiments add up to over

100,000.

Our dataset contains a diverse patient population from dermatology offices lo-

cated throughout the U.S. This makes our model more readily applicable to diverse

patient populations than models developed using localized patient cohorts. Addition-
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ally, using routinely collected EHR features allows more patients to be evaluated for

melanoma as opposed to features collected through time-consuming questionnaires or

examinations. This study does not negate the need for detailed case-control studies

to investigate risk factors, but provides clinical decision support for evaluating an

individual patient’s risk for developing melanoma.
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CHAPTER 6

LEARNING FROM LIMITED DATA

6.1 BACKGROUND AND MOTIVATION

The general consensus in the machine learning community is that more data means

better models, and this assumption has not been made without experimental evidence

[164]. The era of big data has enabled vast amounts of data to be processed and

analyzed in a cost-efficient manner on a scale like never before. Limited data, however,

is still a challenge even when dealing with big data. Just because there is a large

amount of data, it is not necessarily the right data. In this chapter, we explore big

data scenarios where specific types of data are limited.

Many datasets for machine learning can suffer from class imbalance, namely, when

a particular class of interest is much less represented than other classes in a dataset

[85, 166]. The estimated cancer incidence in the U.S. is 439.2 per 100,000 men and

women [109]. Therefore, a predictive model for cancer risk would need to detect

positive instances from a 0.44% class distribution (number of positive cases / number

of total cases).

Supervised classification algorithms require that the data is labeled, meaning the

class membership of each instance in the training data is known. For many appli-

cations, this requires expensive and time-consuming human annotation. Therefore,

even if there is an infinite amount of computing power for model training, there is

still a large cost that must be dedicated to labeling [73]. The question of “How much

data is needed?” has been asked many times and explored through numerous stud-

ies, especially within the bioinformatics and biomedical community [55, 103]. More
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recently, the problem of learning from limited labels has been formulated as an active

area of research [141], even spawning a new research program funded by DARPA [3].

Generally, the problem of “limited labels” refers to when there is a large amount

of unlabeled data available, but only a small amount of labeled data. Class imbal-

ance is even more important when dealing with limited labels, as a theoretical cancer

detection dataset with 10,000 labeled instances would only have 44 positive cases.

The representation learning nature of artificial neural networks leads many re-

searchers to believe that enormous amounts of data are always needed to build ef-

fective models. With most problems, however, there is a point at which the law

of diminishing returns takes effect, and the achieved classification performance hits

a plateau with respect to dataset size, even for deep representational models [155].

This phenomenon can be visualized by creating a learning curve: training models on

increasing sizes of data and plotting the data size versus classification performance

on a graph.

In this chapter, we explore these two limited data problems: limited positive

instances when there is class imbalance (Section 6.2), and limited labels when per-

forming sample size determination (Section 6.3).

6.2 LIMITED POSITIVE SAMPLES

Datasets for machine learning are increasing in both availability and size. The field

of big data has arisen in the last several years to be able to extract insight and build

models from vast amounts of data. While big data has been historically defined by

the 5 V’s (Volume, Velocity, Variety, Veracity, Value), it suffices to consider a dataset

to be “big data” when traditional computing techniques and resources are unable to

analyze or model the data. As computing technology continues to advance, certain

datasets that used to be considered “big” can start be to handled by traditional

methods.
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The problem of class imbalance can be exacerbated when dealing with big data, as

there can be millions of negative (majority) samples, but only hundreds or thousands

of positive (minority) samples [76]. Certain techniques for handling class imbalance,

such as random undersampling, will actually remove majority cases from a dataset.

Therefore, a dataset can start out as “big data”, but if undersampling is performed,

the data that the machine learning model is trained on may very well be “small”

[135]. Machine learning research and model building is an experimental and iterative

process; therefore, the cost and time to train a model can be significant for big

data tasks. If a single model takes a long time to train, it can limit the amount of

experimentation that can be done to achieve an exemplary model.

We present an in-depth study on learning from limited positive samples for the

melanoma risk problem presented in Chapter 5. Using the dataset from Section

5.4, we applied several machine learning techniques for predicting individual risk

of developing melanoma. We applied majority undersampling to these classifiers

to determine how the various model configurations perform on the imbalanced big

data task. K-means clustering of samples from each class shows that samples in the

negative class have more homogeneity than those in the positive class. To the best

of our knowledge, this is the first work to systematically study the impact of limited

positive samples for a cancer risk model, as well as provide solutions for effectively

learning from the data.

6.2.1 Related Works

The effect of class imbalance on machine learning models has been extensively studied

in the literature [80, 142], but only a few studies in recent years have explored class

imbalance for big data. The Evolutionary Computation for Big Data and Big Learning

Workshop (ECBDL) 2014 hosted a competition to build the best predictive model on
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a large imbalanced bioinformatics dataset1. This dataset has 631 attributes and 32

million instances, 2% of which are in the positive class. Triguero et al., the winners of

the competition, utilized random undersampling and evolutionary feature weighting

to build a random forest model that achieved a 73% true positive rate and 73% true

negative rate [158].

Fernandez et al. performed a review of studies that address class imbalance in

big data and conducted their own experiment comparing machine learning model

performance using the Hadoop MapReduce and Apache Spark frameworks using the

ECBDL’14 data [53]. They applied random oversampling (ROS) and random un-

dersampling (RUS) using Spark, and Synthetic Minority Over-sampling Technique

(SMOTE) using Hadoop MapReduce. They found the Spark-based sampling meth-

ods performed better than SMOTE. Using both sampling methods, they only created

a single balanced (50:50) class distribution. In our study, we evaluated various target

class ratios in case 50:50 is not the optimal ratio.

6.2.2 Materials and Methods

In this section, we perform several extensive experiments to determine the impact

of limited positive samples on a clinical risk problem, and solutions to mitigate this

impact to develop accurate predictive models. We used six different classifiers and

performed an initial grid search to determine appropriate parameters for each model

in the subsequent experiments. Then, we evaluated the performance of the classifiers

on both the original dataset and simulated imbalanced datasets. To improve classifier

performance on these datasets, we performed undersampling of majority (negative)

class samples.

1http://cruncher.ico2s.org/bdcomp/
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Simulating Imbalanced Datasets

To determine the impact of class imbalance on the melanoma risk problem, we created

four simulated datasets with different levels of class imbalance from the original data.

This is accomplished by sampling (without replacement) instances from the positive

class. We created sample datasets with four different numbers of positive samples:

5000, 1000, 200, and 100. This is repeated five times for each dataset to reduce bias in

the sampling process. Classifier results are then reported based on the average results

across the five repeats. Along with the original dataset (containing 17,246 positive

instances), this resulted in five different datasets that we trained all six classifiers on.

Throughout this section, we refer to each dataset based on the number of positive

samples in it.

Classifiers and Hyperparameters

We chose a wide range of classifiers from different families of algorithms to study

the performance of each: logistic regression (LR), näıve Bayes (NB), support vector

machine (SVM), decision tree (DT), random forest (RF), and regularized gradient

boosted trees (XGB). Each model has some parameters (also known as hyperparam-

eters) that must be chosen before training the model. We selected these parameters

experimentally by performing a grid search with 5-fold cross-validation on the orig-

inal dataset with RUS to a 35:65 class ratio, evaluated using AUC. The initial grid

values were selected based on literature review, and then were evaluated graphically

to find “peaks” in AUC values. If there was a large difference (>0.001) between

peak and neighboring values, we explored additional values between them until the

differences between values were small (<0.001). The parameters are outlined in the

following paragraphs, and Table 6.1 outlines the grids and selected values for each.

These selected values were used for all experiments in this section.

For LR, we tested various values of the L2 regularization parameter C during
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Table 6.1: Hyperparameter grids

Classifier Parameter Grid Values Selected

LR C
0.001, 0.01, 0.02, 0.05,

0.1, 0.2, 0.5, 1, 10, 100
0.1

SVM C 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5 0.05

NB α 0, 0.1, 0.5, 1, 2, 5, 10 5

DT Max depth None, 2, 3, 4, 5, 6, 7, 10, 20 6

RF Max depth None, 3, 5, 10 None

Num trees
100, 200, 300, 500,

1000, 1500, 2000
500

XGB Learning rate 0.01, 0.05, 0.1, 0.2 0.05

Max depth 3, 5, 10 5

Num trees
100, 200, 300, 500,

1000, 1500, 2000
500

the hyperparameter selection process. We used a multinomial Näıve Bayes model

and selected from various values of the smoothing parameter α. Due to the size of

the dataset we chose a linear kernel for SVM and tested various values of the L2

penalty parameter, C. Since SVM does not return class membership probabilities

(as opposed to the other models used in this study), we calibrated probabilities with

cross-validation using Platt’s method [116].

For DT, we chose to stop tree splitting based on the maximum depth of the tree,

with the specific depth chosen by hyperparameter selection. We evaluated several

values for the maximum depth of each tree in RF and the total number of trees for

each forest. XGB utilizes tree models as the weak learners, and thus maximum depth

and number of trees must be selected. In addition, we tested various values of the

learning rate used in the boosting process.

Data Sampling

To alleviate the impact of class imbalance, we used RUS to preprocess the data with

the following positive:negative sampling ratios to see which is most effective: 1:99,
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Table 6.2: Negative samples by dataset and RUS Ratio

Dataset No RUS
RUS

0.01

RUS

0.1

RUS

0.25

RUS

0.35

RUS

0.5

100 9,514,162 9,900 900 300 186 100

200 9,514,162 19,800 1,800 600 371 200

1,000 9,514,162 99,000 9,000 3,000 1,857 1,000

5,000 9,514,162 495,000 45,000 15,000 9,286 5,000

17,246 9,514,162 1,707,354 155,214 51,738 32,028 17,246

10:90, 25:75, 35:65, and 50:50. Throughout the paper, we refer to these ratios based

on the fraction of positive samples (i.e. 1:99 is represented as 0.01). Table 6.2 shows

the number of negative samples for each dataset when the various RUS ratios are

applied to them. We applied random undersampling to both the original dataset and

simulated imbalanced datasets to understand the relationship between imbalance level

and RUS target class ratio.

Feature Preprocessing

After any data sampling occurred, and before each classifier was trained, we performed

preprocessing of features in each dataset. For all models, we removed features with

zero variance (same value in all samples). Some classification models used in this

study (NB, SVM, LR) depend on assumptions about distributions of independent

variables, and can also perform poorly with high dimensions. For these models, we

performed scaling and selected the top 1,000 features as ranked by the χ2 statistic.

Tree models are robust to varying feature distributions and perform internal feature

selection in the model training process; therefore, for DT, RF, and XGB, we did not

scale or select features before training the classifiers.
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Evaluation

All experiments were performed and evaluated using stratified 5-fold cross-validation

and AUC. Pipelines were created for each model configuration to ensure proper split-

ting of data in the cross-validation process. Figure 6.1 shows an example of a model

pipeline including a simulated imbalanced dataset, undersampling, feature prepro-

cessing, and finally classifier training and evaluation using cross-validation. Note

that each preprocessing step (both sampling and feature processing) occurs within a

single fold of cross-validation. Since each simulated imbalanced dataset is generated

five times, this results in twenty-five runs of each model pipeline. For the original

data, we repeated the 5-fold cross-validation five times to also achieve twenty-five to-

tal runs. Across all experiments in this study, 10,200 individual models were trained

and scored, adding up to over 53 CPU core-days of computing time.
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Figure 6.1: Machine learning pipeline for a model on the 200 dataset with undersampling to a 50:50 class ratio
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To determine if observed differences in model performance were statistically sig-

nificant, we performed a number of ANOVA tests. Factors and levels in the tests

are:

• Dataset : 17,246, 5000, 1000, 200, 100 (based on the number of positive samples

in each dataset)

• Classifier : LR, NB, SVM, DT, RF, XGB

• RUS Ratio: 0, 0.01, 0.1, 0.25, 0.35, 0.5 (target positive class ratio for RUS)

Some experiments do not utilize each machine learning technique, therefore, not all

ANOVA tests presented will have all factors and levels described above. Additionally,

we used Tukey’s honestly significant difference (HSD) test to determine significant

group differences for factors and interactions. Welch’s t-test was used for head-to-head

comparisons.

6.2.3 Results

Before applying any data sampling, we evaluated the performance of each classifier

on the original and simulated imbalanced datasets. Results of this experiment are

presented in Figure 6.2. ANOVA and HSD tests were performed individually for each

classifier to test the differences in AUC across the five datasets. The color of each item

in the figure is labeled according to its group in the HSD test. We can observe that

the AUC generally increases across all classifiers as the number of positive samples

in the dataset increases. DT and RF are the most affected by class imbalance, as the

17,246 dataset performs significantly better than all other datasets. This is likely due

to overfitting in the tree models when there are not many positive instances available

to the model. While RF can overcome this slightly due to the bagging approach,

it is still affected and does not perform well when the number of available positive
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Figure 6.2: Average AUC for each classifier by dataset. Classifier/dataset combina-

tions are labeled based on their group from Tukey’s HSD test.

instances is low. LR, NB, SVM, and XGB are less affected by class imbalance, as

they all have statistically equivalent performance on the 17,246 and 5000 datasets.

These results show that for big data, the class ratio is not an appropriate metric to

use for the impact of class imbalance on a dataset. Even with a low class ratio (0.18%),

an XGB model is able to achieve very good classification performance (AUC=0.80)

because there are still an adequate number of positive samples available to the model

(17,246).

Removing Majority Samples

We evaluated the performance of applying random undersampling before classification

for both the original and derived datasets. Through ANOVA we found that the 200

and 100 datasets have statistically similar performance across all classifiers, so due to

space constraints we only present results for the 17,246, 5000, 1000, and 200 datasets
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Table 6.3: ANOVA: Dataset/Classifier/RUS Ratio

Factor DF SS MS F p

Dataset 3 6.735 2.245 3751.162 0.000

Classifier 5 2.733 0.547 913.249 0.000

RUS Ratio 5 3.086 0.617 1031.277 0.000

Dataset:Classifier 15 1.173 0.078 130.614 0.000

Dataset:RUS Ratio 15 1.127 0.075 125.596 0.000

Classifier:RUS Ratio 25 2.465 0.099 164.747 0.000

Dataset:Classifier:RUS Ratio 75 1.142 0.015 25.436 0.000

Residuals 3456 2.068 0.001

(Figure 6.3). Note that an RUS ratio of zero indicates that no RUS was performed.

We consider this case to be the baseline for each dataset/classifier configuration, and

Figure 6.3b shows the average gain in AUC for each configuration with respect to its

baseline.

By observing these figures, we can see that the datasets with larger numbers

of positive samples (less imbalance) tend to be less affected by RUS across most

classifiers. RF and DT generally have large improvements over the baseline across

all datasets. These models had relatively poor performance on the datasets without

RUS, so RUS helps to improve their performance drastically. RF is even shown to

have the highest AUC for the 1000 and 200 datasets with a 0.5 RUS ratio. The

ANOVA test is presented in Table 6.3, and HSD tests are provided in Tables 6.4-

6.5. The ANOVA shows that the Dataset, Classifier, and RUS Ratio factors and all

interactions are significant. Across all classifiers and datasets, we can see that every

RUS ratio achieves significantly higher AUC than no RUS (Table 6.4, Group D). While

the 0.01 and 0.1 ratios performs better than no RUS, the other ratios (0.25, 0.35, and

0.5) perform significantly better than them and are not statistically different from

each other (Group A). We can also see that XGB is the highest performing classifier

across all datasets and RUS ratios (Table 6.5).

To simplify investigation of the Dataset and Classifier factors, we perform an-
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Figure 6.3: RUS results by classifier and RUS ratio. An RUS ratio of 0 indicates no

sampling (baseline).

128



Table 6.4: HSD: RUS Ratio

RUS Ratio Group AUC SD

0.5 A 0.753 0.040

0.35 A 0.752 0.043

0.25 A 0.749 0.054

0.1 B 0.741 0.069

0.01 C 0.719 0.083

0 D 0.670 0.106

Table 6.5: HSD: Classifier

Classifier Group AUC SD

XGB A 0.768 0.039

LR B 0.752 0.046

SVM C 0.742 0.056

RF D 0.733 0.080

NB E 0.697 0.095

DT E 0.693 0.087

other ANOVA test in Table 6.6 by grouping all the top RUS ratios together into a

new factor: “RUS”. This factor has two levels, FALSE for no RUS and TRUE for any

of the selected RUS ratios (0.25, 0.35, or 0.5). All factors and interactions are also

significant in this test. Table 6.7 presents results of the HSD test of Classifier/RUS

interaction across all datasets. RF has the largest performance increase, going from

the lowest AUC group without RUS to the highest AUC group with RUS. All clas-

sifiers perform significantly better when using RUS except for XGB. XGB without

RUS even performs better or equivalent to all other classifiers with or without RUS

(Group AB). As seen in Figure 6.3a, XGB is least affected by the number of positive

samples and RUS ratios, and achieves top performance across most scenarios.

Across all classifiers, RUS significantly improves AUC results for each dataset

(Table 6.8). Additionally, each dataset with RUS performs better than a dataset

with more positive instances without RUS. The 5000 and 1000 datasets with RUS

even perform better or equivalent to the original 17,246 dataset without RUS. While
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Table 6.6: ANOVA: Dataset/Classifier/RUS

Factor DF SS MS F p

Dataset 3 3.748 1.249 1805.922 0.000

Classifier 5 1.653 0.331 477.993 0.000

RUS 1 2.928 2.928 4233.318 0.000

Dataset:Classifier 15 0.445 0.030 42.886 0.000

Dataset:RUS 3 0.868 0.289 418.347 0.000

Classifier:RUS 5 1.735 0.347 501.658 0.000

Dataset:Classifier:RUS 15 0.399 0.027 38.501 0.000

Residuals 2352 1.627 0.001

Table 6.7: HSD: Classifier/RUS interaction

Classifier:RUS Group AUC SD

RF:TRUE A 0.773 0.024

XGB:TRUE A 0.770 0.033

XGB:FALSE AB 0.766 0.046

LR:TRUE BC 0.761 0.028

SVM:TRUE C 0.755 0.033

NB:TRUE D 0.729 0.055

DT:TRUE E 0.718 0.059

LR:FALSE E 0.712 0.078

SVM:FALSE F 0.699 0.090

NB:FALSE G 0.675 0.095

DT:FALSE H 0.591 0.103

RF:FALSE H 0.580 0.072
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Table 6.8: HSD: Dataset/RUS interaction

Dataset:RUS Group AUC SD

17246:TRUE A 0.780 0.014

5000:TRUE B 0.771 0.014

17246:FALSE C 0.756 0.036

1000:TRUE C 0.749 0.025

5000:FALSE D 0.714 0.078

200:TRUE E 0.705 0.064

1000:FALSE F 0.647 0.102

200:FALSE G 0.565 0.080

RUS significantly improves performance for all classifiers, Figure 6.3b shows that the

magnitude of AUC gain gets higher as the number of positive samples in a dataset

decreases. Besides RF and DT, the classifiers on the 17,246 and 5000 datasets are

barely affected by RUS. The smaller datasets, however, need RUS to achieve good

performance, and the performance on these are actually not much lower than the

datasets with more positive samples. An RF model with an RUS ratio of 0.5 on the

200 dataset can achieve better performance than an RF model on the original data

with no sampling (0.751 vs. 0.689, p<0.001), and close performance on the original

data with 0.5 sampling (0.751 vs. 0.788, p<0.001). This is quite surprising because

the 200 dataset with 0.5 sampling only has 400 instances (200 positive, 200 negative),

while the 17,246 dataset without RUS has 9,531,408 instances. This shows that a large

number of negative samples is not required for building an accurate model; rather, the

number of positive samples controls how effective a model can be in discriminating

between the two classes. Therefore, we can hypothesize that the heterogeneity of the

positive samples is higher than that of the negative samples.

To test this hypothesis, we performed K-means clustering on random samples

of positive and negative instances separately. We randomly sampled 100, 500, 1,000,

5,000, and 10,000 instances from each class twenty-five times and ran K-means cluster-

ing with K = 5 and the Euclidean distance function. Grid search was not performed
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Figure 6.4: Distribution of root-mean-squared distance of each sample to its cluster

center for five different samples by class.

on these parameters because the goal of the clustering was to make a relative com-

parison of the similarity among the positive and negative sample groups. Therefore,

we selected general parameters and ensured consistency when clustering the positive

and negative samples separately. We then measured the distance of each sample to its

cluster center and aggregated all the distances to produce a metric that measures the

heterogeneity of the instances. We take the root-mean-square of each of the distances

for comparison purposes:

RMSD =

√∑n
i=1 d(xi, CCi)2

n
(6.1)

Where n is the number of samples being clustered, CCi is the cluster center for

a particular instance, and d is the distance function. Figure 6.4 shows that across

all random samples, a set of positive samples generally has greater RMSD than an

equally-sized set of negative samples. This confirms our hypothesis that negative

samples are more similar to each other than positive samples. Therefore, less negative

(majority) samples are needed for classification purposes.
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Table 6.9: EC2 instance types

Instance Type # CPUs Memory (GB) Hourly Price ($)

r4.2xlarge 8 61 0.532

r4.4xlarge 16 122 1.064

c4.8xlarge 36 60 1.591

m4.10xlarge 40 160 2.000

Model Training Costs

When dealing with big data, predictive accuracy is not the only consideration when

choosing classifiers and machine learning techniques. With large amounts of data,

computational complexity and cost must be a factor in the selection process. Since

all experiments were conducted using Amazon EC2, we are able to directly calculate

the cost of training each model configuration. Table 6.9 shows the different instance

types used in the experiment along with the on-demand hourly cost of each as of

June 27, 2018. Note that Amazon offers discounted rates by using Spot instances2,

but those prices are not consistent over time so we use the on-demand hourly rate for

comparisons.

Running time is not the best comparison across different classifiers because the

same model configuration can be run on more advanced hardware that would speed

up running time. Additionally, using an instance with more CPUs would only benefit

models that support multithreading. Therefore, we estimate the cost of training a

model by multiplying the running time by the EC2 cost for that instance. EC2 has

a fairly standard pricing model that increases along with hardware complexity. For

example, the r4.4xlarge instance type has double the number of CPUs and memory

as r4.2xlarge and is double the price. This allows us to use EC2 cost as a proxy

for running time that is not affected by hardware configuration. We attempted to

use the smallest possible instance type for each model, and increased the instance

2https://aws.amazon.com/ec2/spot/
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type as we ran into memory errors or significantly long running time. The c4.8xlarge

and m4.10xlarge instance types were only used for XGB and RF as they support

multithreading and benefit from machines with a large number of CPUs.

Figure 6.5 shows the cost of a single model fit for each configuration. Generally, the

cost increases as the model complexity and dataset size increases. Simpler models

such as LR and NB do not incur large costs even for the largest datasets. Some

classifiers can cost over $2, and RF without sampling on the full dataset costs over

$10 for a single model fit. This is due to sheer size of the dataset without sampling

(Table 6.2). The results shows that performing undersampling improves performance

across all datasets and classifiers. This is advantageous because the models with

undersampling will require significantly less time and money to train. Additionally,

after the RUS is performed, each dataset becomes much smaller and does not require

big data methods to learn from. The largest dataset with 0.5 sampling only has

34,492 instances; most modern laptops will be able to train a model on a dataset of

that size.

6.2.4 Section Summary

This section examined the impact of limited positive samples on a model that predicts

individual patient risk of developing melanoma. We created several datasets with

limited numbers of positive cases to determine how this affects model performance

across a number of classifiers. Additionally, we discussed the effect of data sampling

to handle the imbalance of each dataset. From the full dataset, we derived four

additional datasets simulating different levels of class imbalance (100, 200, 1,000, and

5,000 positive samples). We note increasing model performance (as measured by

AUC) as the number of positive samples in each dataset increases. After applying

RUS to each dataset, with various target class ratios, we find that RUS significantly

improves model performance. This shows that while positive cases are indeed distinct
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Figure 6.5: Average training cost (in dollars) for a single model fit by number of

positive samples and RUS ratios for each classifier. Fill colors are based on log scale

to highlight differences.
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from negative cases, many of the negative cases are similar to each other and are not

required for building an accurate model. There also appears to be more variation

between instances in the positive class than between instances in the negative class,

shown by the fact that the model performance increases when there are more positive

cases available, but is not very affected when negative cases are limited. We performed

K-means clustering individually on samples from each class, and show that there is

a greater distance between samples and their cluster center for the positive samples

versus the negative samples. This indicates greater heterogeneity between instances

of the positive class than those of the negative class. The cost of building a model is

significantly reduced by using RUS. Therefore, we can conclude that it is not necessary

to use the full 9.5 million records in this study, and we can save time and cost by

performing random undersampling of the majority class before building a classifier.

6.3 LEARNING CURVE APPROXIMATIONWITH LIMITED LABELS

Labeling data for supervised learning can be an expensive task, especially when large

amounts of data are required to build an adequate classifier. For most problems, there

exists a point of diminishing returns on a learning curve where adding more data only

marginally increases model performance (i.e. convergence). It would be beneficial to

approximate this point for scenarios where there is a large amount of data available

but only a small amount of labeled data. Then, time and resources can be spent wisely

to label the sample that is required for acceptable model performance. In this section,

we explore learning curve approximation methods on the MAMEL melanoma data

as well as three other real-world biomedical datasets, spanning genomics, proteomics,

and insurance claims data, all with millions of instances each and <2% class ratio.

We evaluate a curve fitting method developed on small data using an inverse power

law model, and propose a new semi-supervised method to take advantage of the large

amount of unlabeled data [136]. We find that the traditional curve fitting method is
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useful for most datasets, while the semi-supervised method provides a stable estimator

of convergence as dataset sizes increase.

Approximating learning curves is a useful exercise for scenarios of limited labeled

data where more labels can be gathered at a known cost [132,134]. The shape of the

curve along with the labeling cost can be used to estimate the point of diminishing

returns: where it would not be worth it to collect more labeled data. We explore this

scenario here for the four large, imbalanced biomedical datasets. We simulate the

problem of limited labeled data by only making a small number of labels available

for building learning curves, and evaluate the accuracy of these curves against one

built on the actual labeled data. We apply two techniques for learning curve building:

(1) fitting an inverse power law curve using nonlinear least squares optimization, and

(2) building a semi-supervised learning curve by pseudo-labeling the unlabeled data

from a classifier trained on the labeled data. These methods are compared to see how

well they fit to the actual learning curve, and more importantly, how well they can

identify convergence. To the best of our knowledge, this is the first study to apply

inverse power law learning curve fitting to imbalanced big datasets, as well as the

first to propose a semi-supervised method for learning curve approximation.

Section 6.3.1 outlines prior studies related to learning curves and sample size

determination. The data and modeling methods are presented in Sections 6.3.2 and

6.3.3, respectively, followed by a discussion of the results in Section 6.3.4.

6.3.1 Related Works

Learning curves are a common component of machine learning research and are associ-

ated with several areas of research such as sample size determination, active learning,

and progressive sampling.

Sample size determination is a core part of many statistical studies, particularly

those in the healthcare and biomedical fields [93]. In short, sample size determination
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identifies the number of samples that are needed to prove or disprove a particular

hypothesis or test [61]. For machine learning problems, that can equate to the number

of instances that are needed to build an adequate classifier. Figuero et al. explored

the use of an inverse power law model to fit a learning curve using nonlinear weighted

least squares optimization [55] and compared that to a non-weighted method devised

by Mukherjee et al. [103]. They evaluated their method on two medical text datasets

and one signal processing dataset with 7,016, 8,449, and 5,000 instances respectively.

The positive class ratios for these datasets ranged from 0.240% to 0.400%. They found

that between 80 to 560 labeled samples were required to fit an accurate learning curve

compared to the actual data. We used Figuero’s inverse power law method as one

technique for learning curve approximation.

Progressive sampling and active learning are related fields of research that use

increasing sizes of labeled data to train models. Progressive sampling attempts to find

a point of convergence where adding more data does not improve model performance,

based on a pre-determined or adaptive sampling schedule [117]. The goal is to achieve

the best performance with the minimum amount of computation. Active learning

has a slightly different goal of selecting the most informative instances for training

a model [144]. Active learning methods iteratively add more data to achieve better

performance, and can be used to build a learning curve.

The current study attempts to provide a method for sample size determination,

rather than selecting the best instances or minimizing computation. While we utilize

some methods from the progressive sampling and active learning communities (such

as curve comparison methods and convergence detection), this study does not attempt

to contribute towards those fields.
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Table 6.10: Datasets

ECBDL Medicare Melanoma Splice

Domain Proteomics Insurance claims Clinical records Genomics

Instances 7,998,231 3,692,555 9,531,408 4,627,840

Positive Instances 171,933 1,409 17,246 14,549

Class Ratio 2.15% 0.0381% 0.181% 0.314%

Features 985 123 117,513 100,000

6.3.2 Data

We used four datasets from several domains within biomedical and health informatics,

three of which are derived from publicly-available data. All datasets are inherently

imbalanced (i.e. class balance was not artificially altered for the experiments). Table

6.10 outlines each training dataset, and the following sections describe them in more

detail, review previous work, and discuss data processing that was performed before

experimentation.

ECBDL

The Evolutionary Computation for Big Data and Big Learning (ECBDL) workshop

published a large protein contact map prediction dataset for a competition as part of

the 2014 Genetic and Evolutionary Computation Conference (GECCO)3. The dataset

was originally generated to train a predictor for a different competition: 9th Commu-

nity Wide Experiment on the Critical Assessment of Techniques for Protein Structure

Prediction [17]. The competition provided separate train and test sets; in our study

we derived our dataset from the test set (7,998,231 instances and 985 feature after

one-hot encoding of categorical features). Each instance represents a pair of amino

acids, and the class label is if the pair is in contact. Understanding protein structure

is important for bioengineering research such as drug development, because the func-

tion of a protein depends on its 3-dimensional structure based on a sequence of amino

3http://cruncher.ico2s.org/bdcomp/

139



acids. There are many sub-problems in protein structure prediction, of which contact

map prediction is one. Specifically, contact map prediction involves estimating if two

amino acids are in contact in a 3D structure based on their sequence properties alone.

There are several studies in the literature that have used the ECBDL data for dif-

ferent experiments. Triguero et al. won the ECBDL competition [157] using a random

forest model, random oversampling, and differential evolutionary feature weighting.

Rio et al. [43] describe the same experiment as Triguero et al., and achieve the same

best results (compare Rio Table VI to Triguero Table V). Rio does provide more

results than Triguero, namely RF results without ROS, and random undersampling

(RUS) results. Both studies were performed using Hadoop MapReduce and the Ma-

hout library for its RF implementation.

Medicare

The Centers for Medicare & Medicaid Services (CMS) runs the Medicare insurance

program, which covers all U.S. citizens age 65 and older (along with select other

groups). CMS releases aggregated public use files every year covering various com-

ponents of the insurance program such as provider demographics, payments, drug

utilization, and more.

Bauder et al. used the Medicare Provider Utilization and Payment Data set

covering 2012 to 20154 to detect possible fraudulent medical providers [22,23,64]. The

dataset contains physician information and aggregate payment information for each

combination of Medicare physician and medical procedure, such as: provider specialty,

provider gender, number of procedures performed, number of unique beneficiaries

receiving the service, number of unique beneficiaries per day, average submitted charge

amount (dollars), and average payment made to the provider per claim (dollars). This

results in 3,692,555 instances and 123 features after one-hot encoding of categorical

4https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/Medicare-Provider-Charge-Data/Physician-and-Other-Supplier.html
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data.

The class label was gathered from another publicly-available U.S. government

dataset: List of Excluded Individuals/Entities (LEIE) from the Department of Health

and Human Services5. The individuals and entities in this list are prohibited from

participating in federally-funded healthcare programs such as Medicare due to various

convictions related to medical practice, or license revocation or suspension. The LEIE

database was linked to the Medicare dataset via National Provider Identifier (NPI),

which is a unique identifier for each physician in the U.S. The original Medicare

dataset contains one row for each physician/procedure performed, so Bauder et al.

reduced the data to the physician-level by computing aggregated stats for the values

in the data (i.e. min, max, mean, median, sum, standard deviation).

Melanoma

This section uses the same MAMEL melanoma risk dataset as Sections 5.4 and 6.2.

The dataset contains information from routine dermatology office visits, occurring

from 2011 to 2016, for 9,531,408 unique patients that did not have a diagnosis of

melanoma through 2016. The class label for each instance is whether or not the

patient developed melanoma in the subsequent year (2017).

Splice

Splice is a dataset for detecting human acceptor splice sites in DNA sequences, gath-

ered from the LIBSVM [32] dataset repository6. Splice site detection is an important

part of understanding gene structure [21]. The prediction problem involves detecting

the border between introns and exons (splice site) in a DNA sequence. These splice

sites occur after dinucleotides AG (acceptor site) or before dinucleotides GT (donor

site), but these dinculeotides do not always mark a splice site. This machine learning

5https://oig.hhs.gov/exclusions/exclusions list.asp
6https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#splice-site
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problem involves using neighboring sequences to discriminate between real and fake

splice sites.

The dataset was originally created by Sonnenburg et al. to demonstrate the

effectiveness of their COFFIN linear SVM training strategy [149]. They provided

downloadable sequence data along with scripts to extract features for the model, but

Agarwal et al. [8] materialized this full dataset of 50 million instances and 11,725,480

features and provided it for the LIBSVM repository. Due to the sheer size and

dimensionality of the data, we derived our train/test sets from Sonnenburg/Agarwal’s

test set for our experiments (4,627,840 instances, 0.3% positive) and selected the top

100,000 features as ranked by the χ2 statistic.

The research using this dataset, led by Sonnenburg, Agarwal, and others, focused

primarily on methods for large-scale computing, and did not attempt to approximate

learning curves or sample the data. Agarwal even stated that the Splice dataset

was “the largest public data set for which subsampling is not an effective learning

strategy.” [8] To confirm or deny that statement is outside the scope of this study,

although for the sampled dataset we used, we observe a performance plateau in the

learning curve.

6.3.3 Methods

We conducted experiments to perform sample size determination on four large imbal-

anced datasets by approximating learning curves. To do so, we used a dataset where

all labels are known, then created samples of data without labels to simulate limited

label scenarios.

Learning curves

A learning curve is created by plotting the size of the dataset versus the classification

performance as the size increases. Due to the large and imbalanced nature of the
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dataset, we present all curves with the number of positive cases for brevity. In the

text, we also refer to the sizes based on the number of positive instances and include

the total number of instances in parentheses. Generally, a sampling schedule is set

to determine which points along the curve models are built and evaluated for, in the

same manner as progressive sampling [117]. We used an arithmetic schedule with a

constant step size that resulted in 100 steps for each dataset. Since the datasets have

a varying number of instances, the step size is different for each.

Each point in the learning curve is averaged over 10 repeats of 5-fold cross-

validation, evaluated using AUC. The machine learning pipeline was consistent across

all models for a given dataset. For feature pre-processing we removed features with

zero variance, performed feature scaling, and selected the top features according to

χ2. We selected 100 features for ECBDL and 1,000 features for Melanoma and Splice

(no feature selection was performed for Medicare). The classifier was logistic re-

gression with the L2 penalty. Note that the pre-processing steps were all performed

independently within each repeat and fold of cross-validation.

Approximation methods

To determine sampling schedules for the approximation methods, we first examined

the learning curves for each dataset and found the point in the curves where the AUC

was within 1% of the AUC using the full dataset. Then, to reduce computational

requirements, we built curves only up to that point, also using 100 steps for the

reduced learning curve.

For the inverse power law approximation method, we trained and evaluated models

with a schedule from 10 to 200 with a step size of 10. Then, these points were used

to fit a curve using nonlinear least squares optimization according to Figueroa et al.’s

method [55]. The optimization routine needed at least 3 training points to converge;

therefore, we were able to start making predictions from 30 positive samples.
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For the new proposed semi-supervised approximation method, we trained a clas-

sifier using LR on the small labeled data and used that to create pseudo-labels for

the unlabeled data. We trained models with 30, 50, and 100 positive samples and

then created pseudo labels for the rest of the samples. Then, the same learning curve

creation process on the actual data was used for the pseudo-labeled data. A new

model from the labeled data was trained for each of the 10 repeats. This involves

using all the available data, but still only the small amount of labeled data. This

helps to capture the variance and properties of the full dataset, even though labels

are not available. The class distribution of the pseudo labels were drastically differ-

ent than the original distribution; for each point in the learning curve we sampled

instances from the positive and negative pseudo labels separately to match the target

class distribution. If there were not enough instances to satisfy the desired sample

size, we performed random oversampling.

Evaluation

We used several methods to compare the actual learning curve to the two approxi-

mation techniques. First, we can compare the curves visually to note the trends in

curve shape. To quantitatively compare the curves, we compute the mean absolute

error (MAE) between points on the actual and the approximated curve. The cumu-

lative MAE as the prediction size increases can be plotted to observe how accurate

the methods are at approximating performance at larger dataset sizes.

While MAE measures the average distance between each actual and predicted

point, it does not quantify well the differences in curve shape. To identify potential

points of diminishing returns, we calculated point-wise slopes using linear regression

with local sampling (LRLS) [117]. This method selects neighbors around a point in

the curve and trains a linear model to calculate the slope of the curve at that point.

We used 4 neighbors (2 before and 2 after) for LRLS. A confidence level of 0.95 was
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used for all statistical tests.

6.3.4 Results

The experiment was conducted in a step-wise approach, first by analyzing the full

learning curves for each dataset, then performing another round of experimentation to

build and evaluate the learning curve approximation methods. For the approximation

methods, we used at most 200 positive samples for training, then created a test curve

for each dataset based on the behavior of the full learning curve. Sampling schedules

for the full and test learning curves are provided in Table 6.11. In total, over 100,000

logistic regression models were trained and evaluated, adding up to approximately

717 CPU-days of compute time.

Learning curves

The full learning curves for each dataset are presented in Figure 6.6. For all curves,

there is a point about halfway or before where the AUC is within 1% of the full

data (indicated by the red and black dotted lines). It is interesting to note that the

point of rapid performance increase for all datasets besides Medicare occurs before

2,500 positive instances. This shows that even for these big datasets, not all the data

is required to achieve adequate classifier performance. Medicare has a very small

range on the y-axis, indicating that adding more samples does not drastically increase

performance. We hypothesize that this is due to the severely imbalanced nature of

the dataset- there are only 1,409 positive samples available and the classifiers are not

able to discriminate well between the two classes. For ECBDL, the curve begins at

an AUC very close to the full AUC. This is because the period of rapid performance

increase for ECBDL is before the start of the sampling schedule, as will be seen in

subsequent analysis.

The approximated learning curves for both methods are presented in Figure 6.7.
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Table 6.11: Sampling schedules

(a) Full learning curve

ECBDL Medicare Melanoma Splice

1,719 (79,966) 14 (36,689) 172 (95,059) 145 (46,122)

3,438 (159,932) 28 (73,378) 344 (190,118) 290 (92,244)

5,157 (239,898) 42 (110,067) 516 (285,177) 435 (138,366)

6,876 (319,864) 56 (146,756) 688 (380,236) 580 (184,488)

8,595 (399,830) 70 (183,445) 860 (475,295) 725 (230,610)

... ... ... ...

165,024 (7,676,736) 1,344 (3,522,144) 16,512 (9,125,664) 13,920 (4,427,712)

166,743 (7,756,702) 1,358 (3,558,833) 16,684 (9,220,723) 14,065 (4,473,834)

168,462 (7,836,668) 1,372 (3,595,522) 16,856 (9,315,782) 14,210 (4,519,956)

170,181 (7,916,634) 1,386 (3,632,211) 17,028 (9,410,841) 14,355 (4,566,078)

171,900 (7,996,600) 1,400 (3,668,900) 17,200 (9,505,900) 14,500 (4,612,200)

(b) Test learning curve

ECBDL Medicare Melanoma Splice

34 (1,581) 6 (15,724) 79 (43,661) 81 (25,765)

68 (3,162) 12 (31,448) 158 (87,322) 162 (51,530)

102 (4,743) 18 (47,172) 237 (130,983) 243 (77,295)

136 (6,324) 24 (62,896) 316 (174,644) 324 (103,060)

170 (7,905) 30 (78,620) 395 (218,305) 405 (128,825)

... ... ... ...

3,264 (151,776) 576 (1,509,504) 7,584 (4,191,456) 7,776 (2,473,440)

3,298 (153,357) 582 (1,525,228) 7,663 (4,235,117) 7,857 (2,499,205)

3,332 (154,938) 588 (1,540,952) 7,742 (4,278,778) 7,938 (2,524,970)

3,366 (156,519) 594 (1,556,676) 7,821 (4,322,439) 8,019 (2,550,735)

3,400 (158,100) 600 (1,572,400) 7,900 (4,366,100) 8,100 (2,576,500)
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Figure 6.6: Full learning curves for each dataset. The horizontal dotted lines indicate

the range of AUC from a small size (10) to the full dataset (last point). The dotted

black line indicates the point where the AUC is within 1% of the full dataset. For

ECBDL, we only show part of the curve as the AUC converges very early.

While the inverse power law method has a large number of potential fit configurations,

we show fit sizes of 30, 50, and 100 to compare to the semi-supervised method. For

all datasets except Melanoma, the inverse power law method tends to fit to the test

curves quite well, while the semi-supervised curves tend to have the correct shape but

larger absolute values.
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Figure 6.7: Approximated learning curves for each dataset using the inverse power law and semi-supervised methods.

The dotted line indicates the test learning curve for each dataset.
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Figure 6.8: MAE as prediction size increases

The MAE as the number of positive samples increases is provided in Figure 6.8.

Across all datasets, the power law method shows an increasing MAE as the size of

the number of positive instances increases, while the semi-supervised method has a

decreasing MAE. Note that the error is indeed larger for the semi-supervised method,

so it is less accurate if the actual predicted AUC value is important. We believe

that the more important scenario is the point of convergence, since that is what will

be used to make a determination about how much data to label for an experiment.

Therefore, the semi-supervised curves are still be valid for identifying convergence.

Inverse power law method

As seen in Figure 6.7, the inverse power law method fits well to the test curve for all

datasets except Melanoma. Those curves all use a sampling schedule starting from

10 to 30, 50, or 100 for fitting the inverse power law curve. We explored varying

this fit schedule by starting and ending at all possible points in the train data where

the number of points for training is >2. This results in a large number of possible

fit schedules: 10-30, ..., 10-200, .., 100-130, 100-140, .., 100-200, 180-200, etc. The

149



Table 6.12: Best fitting inverse power law curves

Dataset Fit start Fit end MAE

ECBDL 90 170 0.006

Medicare 80 180 0.004

Melanoma 150 170 0.011

Splice 30 50 0.017

results are presented in Figure 6.9. Specifically for Melanoma, we see that the curves

tend to fit better when the fitting starts with >120 positive instances. Table 6.12

shows the fit schedules for the best fitting curves for each dataset (according to MAE).

Note that we are only able to know which curves fit best because we know the actual

test curve. In a real scenario of sample size determination with limited labels, we

would not know the actual learning curve. Therefore, we are unable to know which

fit schedule produces the correct approximation for a learning curve. Future work is

needed to develop methods that can evaluate the accuracy of these curves even when

the actual learning curve is not known.

Semi-supervised method

Even if the absolute values of AUC are overly optimistic with the semi-supervised

method, we believe that the most important point in a learning curve for sample size

determination is the point of convergence, as that is what will be used to decide how

much data to label for an experiment. The point-wise slopes as calculated by LRLS

for the Splice data are shown in Figure 6.10, with a sample convergence point at a

slope <0.0001. This means that each addition of 100 positive (31,808 total) instances

only increases the AUC of the model by 0.0001. The actual data hits the convergence

point at 1,300 instances, while the semi-supervised curve hits at 1,000, and the inverse

power law at 700. Therefore, if the point of convergence is the key consideration, the

semi-supervised method is more accurate.

Most learning curves exhibit a trend where the initial portion of the curve shows
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Figure 6.9: Inverse power law method with varying fit schedules
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Figure 6.9: Inverse power law method with varying fit schedules (contin.)
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Figure 6.10: Point-wise slopes determined by LRLS (Splice dataset). The dotted line

represents a point of convergence.

Table 6.13: Curve slopes by region

Region Actual Inverse power law Semi-supervised

Exp 2.514 (1.554-3.474) 1.398 (1.16-1.635) 1.566 (1.059-2.074)

Increase 0.109 (0.098-0.121) 0.056 (0.046-0.067) 0.097 (0.07-0.123)

Plateau 0.012 (0.01-0.013) 0.011 (0.01-0.011) 0.002 (0.002-0.002)

exponentially increasing performance, followed by a period of gradual increase, then

a plateau. We visually identified these portions in the actual learning curve then

compared the slopes for each portion (Table 6.13). The Exp region is from 10 to

100 positive instances, the Increase region is from 100 to 2,500, and the Plateau is

>2,500. For an approximation method, the most important part of the curve is the

Increase region, as the end of that region indicates the start of the Plateau, or point

of diminishing return. While the inverse power law method achieves nearly the exact

slope as the actual during the Plateau region, the slope of the actual curve during the

Increase region is within the confidence interval of the semi-supervised method. This

shows that the semi-supervised method has a more accurate slope for the Increase

region than the inverse power law method.

Using a semi-supervised method raises the question: is it possible to just train a
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semi-supervised classifier rather than labeling more data? We explored this question

by evaluating the performance of a classifier on a large set of data versus the same set

of data with pseudo-labels created from a model on a small set. We repeated both

experiments 25 times using the Splice dataset with 2,500 positive (795,216 total)

instances and using 50 positive (15,904 total) for pseudo-labeling. The classifier from

the actual data achieved an AUC of 0.843, while the semi-supervised classifier achieved

an AUC of 0.544 (p < 0.001). This shows that the pseudo-labels are indeed noisy

and not an accurate representation of the true labels. As shown by our experiment,

however, the behavior of a learning curve on the pseudo-labeled data can be effectively

used for sample size planning.

6.3.5 Section Summary

In this section, we evaluated two learning curve approximation methods for large

imbalanced biomedical datasets in the context of sample size planning. These meth-

ods provide guidance for future machine learning problems that require expensive

human-labeling of instances. A small number of labeled instances can be used to

build a learning curve, and this can be used in conjunction with labeling costs to

determine the number of samples that need to be labeled. We applied a traditional

inverse power law model as well as a new proposed semi-supervised method through

pseudo-labeling. We found that the inverse power law method was accurate for smaller

sizes of data, and while the semi-supervised method had a larger absolute error, it

was better at detecting convergence than the power law method. There is much op-

portunity for future work in this line of research, including evaluating these methods

on more large, imbalanced datasets with additional classifiers. Additionally, more

mathematical and semi-supervised methods for learning curve approximation can be

built upon the foundation of those presented in this study.
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6.4 CHAPTER SUMMARY

While we are in the era of big data, we still have challenges related to limited data. In

this chapter we explored two such scenarios: (1) limited positive samples for binary

classification and (2) limited labels for sample size determination. Both sections show

that not all the data is necessary for specific tasks. When there is class imbalance

(i.e. limited positive samples), many of the negative samples are not needed to build

effective classifiers. Additionally, we found for various datasets in Section 6.3 that a

small percentage of data was required to achieve classification performance within 1%

of the full dataset. We evaluated two methods for learning curve approximation and

presented scenarios where they would be useful for sample size determination with

limited labels.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, we presented data engineering and machine learning approaches

to build clinical risk models for melanoma from structured electronic health records.

We explored the use of various machine learning algorithms along with advanced

methods to handle high-dimensionality and class imbalance. Additionally, we ex-

plored limited data scenarios with learning curve approximation. In the following

sections, we summarize the conclusions drawn from this research and avenues for

future work.

7.1 STRUCTURED CLINICAL DATA

We created the Modernizing Analytics for Melanoma (MAMEL) dataset: a clinically

relevant dataset derived from real-world de-identified EHR data. This dataset was

used for several studies in this work, and provided thousands of structured data points

for millions of patients. It is important to continue to build datasets such as this, as

data provided to clinical models must be structured, frequently captured, and relevant

as to apply to large populations of patients.

7.2 SENTINEL LYMPH NODE METASTASIS

We studied the performance of several models for predicting sentinel lymph node

metastasis in melanoma patients. We used the MAMEL data to build logistic re-

gression, decision tree, and random forest models. These models were compared to

a simple benchmark model using tumor thickness as a single predictor of SLN posi-
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tivity. The machine learning models were not able to outperform the benchmark as

measured by AUC, but were able to achieve higher sensitivity for thin melanomas

and higher specificity for thick melanomas. Contributions of this work involve de-

mostrating that the tumor thickness is the single greatest predictor of SLN status,

and that machine learning models can provide guidance for recommending an SLN

biopsy for thin melanomas (<1mm). Future work includes using additional machine

learning techniques, predicting other types of melanoma metastasis, and deploying

the model in a clinical setting.

7.3 MELANOMA RISK

We reviewed existing literature for cancer risk modeling, and described several ex-

periments to build melanoma risk prediction models from the MAMEL data. Our

work provides a reference framework for machine learning studies using large, high-

dimensional, and imbalanced EHR data. We used a distributed processing infrastruc-

ture for collecting and formatting the data as well as a non-distributed infrastructure

for machine learning. Then, we achieved statistically similar or better performance

using a sampled dataset versus the original data, saving hundreds of dollars in cloud

computing costs for model experimentation. The structured-data EHR and cloud-

based model training process described herein addressed the shortcomings identified

in previous cancer risk modeling studies. Availability of structured clinical data:

the structured, cloud-based EHR system provided consistently collected data points

across millions of patients at different practices. Old data: the data consistency

allowed for rapid querying, de-identification and transformation of data to use for

training machine learning models. The time between the end of the study period

(December 2017) and study completion was about one year. Advanced modeling

methods : we used a familiar and feature-rich machine learning framework (scikit-

learn) with advanced machine learning techniques such as random forest, XGBoost,
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data sampling, and feature selection.

Future studies should aim to validate the data infrastructure choices on other clin-

ical datasets and improve the accuracy of the melanoma risk models. More advanced

algorithms such as artificial neural networks can be explored to take advantage of the

longitudinal data available in EHR systems. While this current study does not utilize

image data, future research should consider combining both EHR and image data to

provide the best risk models for dermatology patients.

7.4 LEARNING FROM LIMITED DATA

We explored the problem of limited data from two perspectives: (1) limited positive

samples for melanoma risk prediction (2) limited labels for sample size determination

with four biomedical datasets. When there are limited positive samples, many of the

negative samples are not needed to build effective classifiers. We also found that only

a small percentage of data across all four datasets was required to achieve classifi-

cation performance within 1% of the full dataset. We applied a traditional inverse

power law model as well as a new proposed semi-supervised method for approximat-

ing learning curves with limited labeled data. We found that the inverse power law

method was accurate for smaller sizes of data, and while the semi-supervised method

had a larger absolute error, it was better at detecting convergence than the power

law method. There is much opportunity for future work in this line of research, in-

cluding evaluating these methods on more large, imbalanced datasets with additional

classifiers. Additionally, more mathematical and semi-supervised methods for learn-

ing curve approximation can be built upon the foundation of those presented in this

work.
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